首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
曾建军  肖宜安  孙敏   《广西植物》2006,26(6):628-630,601
以长柄双花木当年生嫩梢上的叶柄、嫩茎、嫩叶为外植体,对影响长柄双花木愈伤组织诱导和继代、分化主要因素进行研究。结果表明:在培养基MS+NAA0.5mg/L+2,4-D2.0mg/L上,三种外植体均可诱导出愈伤组织,其中叶片愈伤组织诱导率最高。该培养基还可作为愈伤组织继代培养基,但继代培养周期不超过2周。愈伤组织接种在MS+BA2mg/L上分化不定芽,根的诱导在1/2MS+IBA0.5mg/L培养基上进行。  相似文献   

2.
为保护野生资源、实现人工栽培,本研究以葶苈(Draba nemorosa)嫩茎为材料,采用组织培养方法进行愈伤组织诱导与分化、不定芽生根与试管苗生根继代增殖培养,以及移栽和定植研究。结果表明,MS+6-BA 0.4 mg/L+2,4-D 2.5 mg/L是愈伤组织诱导培养和继代增殖培养的理想培养基;MS+6-BA 0.6 mg/L+NAA 0.1 mg/L 是愈伤组织分化培养和不定芽继代增殖培养的理想培养基;1/3MS+IAA 0.6 mg/L是不定芽生根培养和生根继代增殖培养的理想培养基;试管苗移栽成活率为86.8%,定植成活率为96.4%;定植苗保持了野生葶苈的植物学性状。  相似文献   

3.
野牛草幼穗愈伤组织的诱导及植株再生   总被引:5,自引:0,他引:5  
以野牛草[Buchloe dactyloides(Nutt.)Engelm.]幼穗为外植体,建立了愈伤组织诱导、继代培养和植株再生体系。结果表明,雌穗比雄穗难以脱分化形成愈伤组织;小于8mm雄幼穗在2mg/L2,4-D培养基上的愈伤组织诱导率为80.0%~86.8%;添加10mg/L AgNO3对愈伤组织诱导率影响不明显,但可改善愈伤组织质量。2mg/L 2,4-D结合0.1mg/L 6-BA的培养基有利于愈伤组织的继代培养;继代超过3次、继代间隔超过3周,愈伤组织分化能力明显下降。雄穗愈伤组织在含1.0mg/L 6-BA培养基上,弱光条件下分化出芽的频率较高,达31.8%~35.0%;附加3%麦芽糖既可减轻褐化程度,又利于丛生芽的分化。分化苗在1/2MS 0.3mg/L IBA培养基上的生根率为62.5%。  相似文献   

4.
水翁悬浮细胞系的建立及其悬浮培养的生长特性   总被引:2,自引:0,他引:2  
建立了水翁悬浮细胞系,并对其悬浮培养的生长特性作了初步探讨。以水翁新生芽尖作为外植体,接种于添加有不同浓度和配比的生长调节物质及各种附加物的MS固体培养基中,诱导培养产生初代愈伤组织;挑选Ⅰ和Ⅱ型的愈伤组织进行继代培养改良,考察愈伤组织的生长状况和统计生长量来决定最佳继代培养基的配方和得到适合悬浮培养的愈伤组织;将以上得到的愈伤组织转接于最佳继代液体培养基中,于24±1℃,120r/min条件下振荡培养,筛选分散度好、较均匀、生长快、色浅透明的细胞作为种子传代,数次传代后得到性能良好的悬浮细胞系;以细胞生长量(鲜重)为指标,绘制了水翁悬浮细胞的生长曲线。研究表明:2.0mg/L的2,4-D的诱导率最高(92%,初代愈伤组织为Ⅰ型),Ⅱ型愈伤组织的最高诱导率为75%;最佳的继代培养基配方为MS 0.5mg/L 2,4-D 0.5mg/L 6-BA 1.0mg/L IAA 0.5mg/L IBA 0.5mg/L NAA 0.1mg/L KT 700mg/L LH,形成Ⅱ型愈伤组织的生长量可达3.28g/瓶(鲜重);液体继代培养3代后,可得到性能良好的悬浮细胞系;水翁悬浮细胞的生长曲线表明,最佳接种期为培养后的16~18d。  相似文献   

5.
新疆雪莲愈伤组织诱导及总黄酮的测定   总被引:1,自引:0,他引:1  
以新疆雪莲植株叶片为外植体,研究了不同植物激素和培养时间对新疆雪莲愈伤组织生长、总黄酮含量和产量的影响.结果表明:新疆雪莲愈伤组织最佳诱导培养基为MS+2.00 mg/L NAA+1.00 mg/L 6-BA,其愈伤组织诱导率最高(97.0%);继代培养基以MS+2.00 mg/L NAA+1.00 mg/L 6-BA中愈伤组织生长量和总黄酮产量最高,分别达4.58 g和12.24 mg;以MS+4.00 mg/L NAA+2.00 mg/L 6-BA中的愈伤组织总黄酮含量最高,达2.17 mg/g;愈伤组织的生长量随继代培养时间的延长而增加,而其总黄酮含量不稳定,于继代培养第30天达到最高(2.7 mg/g),此时总黄酮产量最高可达26.66 mg.  相似文献   

6.
为了建立和优化获得有效生物碱成分的三尖杉愈伤组织的培养技术和方法,以大连地区移栽自庐山植物园的三尖杉(Cephalotaxus)植株为原料,就外植体种类、基本培养基种类、激素种类和浓度等因素对愈伤组织诱导、生长的影响进行了系统的研究和归纳。实验发现,幼茎外植体因其出愈率早、诱导率高而最佳;培养基MS NAA3.0mg/L KT0.1mg/L为最佳诱导愈伤培养基,其诱导率达91%,继代培养基中一定浓度的NAA(1.0~3.0mg/L)有利于愈伤组织的产生,但是高浓度的NAA(8.0mg/L)则对愈伤组织的生长有抑制作用,其在MS基础培养基上较在B5和1/2MS培养基上褐化轻,生物量增长快,冬季诱导的愈伤组织,其诱导率普遍高于夏季所诱导的愈伤组织。结果表明,以11月份三尖杉幼茎为外植体,以MS NAA3.0mg/L KT0.1mg/L为诱导培养基和继代培养基,继代6~8代,每代培养30~35d,收获愈伤组织或细胞培养物,该程序是获得大量三尖杉愈伤组织的较佳培养程序。  相似文献   

7.
苎麻体细胞胚胎发生研究初报   总被引:1,自引:0,他引:1  
将苎麻“浏阳大叶绿”的子叶培养在附加0.55mg/L CPA、 0.05 mg/L BR 的CXW培养基上,可获得淡黄色或浅灰绿色的颗粒状愈伤组织。将愈伤组织转移至附加0.1 mg/L CPA、 0.05 mg/L NAA 、1.5 mg/L ZT的CXW培养基上继代;颗粒状结构非常明显。继续培养在添加2 mg/L Met, 3 g/L YE 的上述继代培养基上,可分化出一些相互独立的胚状体,继而发育成为胚状体幼苗。  相似文献   

8.
为建立川芎(Ligusticum chuanxiong Hort.)高频再生体系,优化了诱导和分化培养基及培养条件。以叶柄为外植体,以MS为基本培养基,KT 2.0 mg/L+IAA 0.5 mg/L的激素组合对不定芽分化最有利。在此基础上,针对外植体来源、培养条件和愈伤组织继代时间3个因素进行优化。结果表明:采用川芎无菌苗叶柄作为外植体,黑暗条件下诱导出愈伤组织,再在光照下继代培养15 d后转入分化培养基中对不定芽诱导最为有利,分化率为44.4%。分化后得到的不定芽在含NAA 0.5 mg/L和IBA 0.5 mg/L的 1/2MS培养基上生根率达90%,移栽存活率为95%。  相似文献   

9.
罗布麻愈伤组织诱导及植株再生   总被引:2,自引:0,他引:2  
以罗布麻(Apocynum venetum L.)当年的成熟种子和5周龄的幼苗叶片为外植体,研究了不同激素组合、暗培养对愈伤组织及植株再生的影响.结果表明,幼苗作外植体诱导愈伤的最佳培养基为添加1.0 mg/L 6-BA 0.2 mg/L IBA的MS培养基;继代培养中1.0 mg/L 6-BA与0.2 mg/L IBA组合愈伤致密而生长迅速,长时间培养硬化的愈伤组织可用添加0.5 mg/L 6-BA和0.1 mg/L IBA培养基和初期暗培养获得大量质地疏松、增殖迅速的愈伤组织;再生苗诱导以0.5 mg/L 6-BA 0.2 mg/L IBA组合为佳;1/2MS附加NAA 0.6 mg/L为适宜的生根培养基,初步建立了罗布麻离体再生体系.  相似文献   

10.
为建立川芎(Ligusticum chuanxiong Hort.)高频再生体系,优化了诱导和分化培养基及培养条件.以叶柄为外植体,以MS为基本培养基,KT2.0 mg/L+ IAA0.5mg/L的激素组合对不定芽分化最有利.在此基础上,针对外植体来源、培养条件和愈伤组织继代时间3个因素进行优化.结果表明:采用川芎无菌苗叶柄作为外植体,黑暗条件下诱导出愈伤组织,再在光照下继代培养15d后转入分化培养基中对不定芽诱导最为有利,分化率为44.4%.分化后得到的不定芽在含NAA0.5 mg/L和IBA 0.5 mg/L的1/2MS培养基上生根率达90%,移栽存活率为95%.  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
18.
19.
20.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号