首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The biologic properties of two major proteoglycans of bovine aorta, heparan sulfate proteoglycan and chondroitin sulfate-dermatan sulfate proteoglycan were compared. The heparan sulfate proteoglycan was isolated either by elastase digestion or by 4.0 M guanidine hydrochloride extraction, of aorta tissue, fractionated by CsCl isopycnic centrifugation and purified by chondroitinase ABC treatment. The first method resulted in considerably greater yield (about 70% of the total heparan sulfate proteoglycan of the tissue) than the second procedure (12% of total). The chondroitin sulfate-dermatan sulfate proteoglycan was obtained by 4.0 M guanidine-HCl extraction of aorta tissue followed by CsCl isopycnic centrifugation. The chemical composition of both heparan sulfate proteoglycan preparations was similar. Unlike the chondroitin sulfate-dermatan sulfate proteoglycan, which eluted in the void volume of Sepharose CL-6B column, the heparan sulfate proteoglycan preparations were each resolved into a high molecular weight fraction (kav = 0.18 and 0.13) and a low molecular weight fraction (kav = 0.47 and 0.36). The heparan sulfate proteoglycan preparations exhibited significantly more potent anticoagulant and platelet aggregation inhibitory activities than the chondroitin sulfate-dermatan sulfate proteoglycan. The protein core of the proteoglycan molecules did not seem to be essential for their hemostatic properties. The complex forming ability of the heparan sulfate proteoglycan with serum low density lipoproteins (LDL) was much less than that of chondroitin sulfate-dermatan sulfate proteoglycan in the presence and absence of Ca2+. Interaction between heparan sulfate proteoglycan and LDL was also much more sensitive to changes in the ionic strength of the medium than that of chondroitin sulfate-dermatan sulfate proteoglycan and the lipoprotein. Since the total sulfate content of both proteoglycans is almost similar, the smaller molecular size and hence the lower overall charge density of the heparan sulfate proteoglycan appears to be partly responsible for its low affinity for LDL. The differences in biologic properties of the two proteoglycans might have implications in the pathophysiology of cardiovascular diseases.  相似文献   

2.
The proteoglycans secreted by a malignant human breast cell line (MDA-MB-231) were compared with the corresponding proteoglycans from a normal human breast cell line (HBL-100). The physicochemical characteristics of these proteoglycans were established by hexosamine analysis, chemical and enzymatic degradations, and dissociative cesium chloride density gradient centrifugation, and by gel filtration before and after alkaline beta-elimination. Both cell lines secreted approximately 70% of the synthesized proteoglycans, which were composed of 20% heparan sulfate and 80% chondroitin sulfate proteoglycans. The MDA cell line secreted large hydrodynamic size (major) and small hydrodynamic size heparan sulfate proteoglycan. In contrast HBL cells secreted only one species having a hydrodynamic size intermediate to the above two. The chondroitin sulfate proteoglycans from MDA medium were slightly larger than the corresponding polymers from HBL medium. All proteoglycans except the small hydrodynamic size heparan sulfate proteoglycan from MDA medium were of high buoyant density. The proteoglycans of both cell lines contained significant proportions of disulfide-linked lower molecular weight components which were more pronounced in the proteoheparan sulfate polymers, particularly those from MDA medium, than in chondroitin sulfate proteoglycans. The glycosaminoglycans of heparan sulfate proteoglycans from MDA medium were more heterogeneous than those from HBL medium. The glycosaminoglycan chains of large hydrodynamic size heparan sulfate proteoglycans from MDA medium were larger in size than those from HBL medium while small hydrodynamic size heparan sulfate proteoglycans contained shorter glycosaminoglycan chains. In contrast to the glycosaminoglycans derived from chondroitin sulfate proteoglycans of both MDA and HBL medium were comparable in size. The heparan sulfate as well as chondroitin sulfate proteoglycans of both cell lines contained both neutral (di- and tetrasaccharides) and sialylated (tri- to hexasaccharides) O-linked oligosaccharides.  相似文献   

3.
Using immunological assays, we determined the relationship between the heparan sulfate proteoglycans produced by two different murine basement-membrane-producing tumors, i.e., the mouse Engelbreth-Holm-Swarm (EHS) tumor and the L2 rat yolk-sac tumor. Antibodies prepared against the heparan sulfate proteoglycans obtained from these two sources immunoprecipitated the same precursor protein with a molecular mass of 400,000 daltons from 35S-methionine pulse-labeled cells of both tumors. Immunohistochemistry showed the heparan sulfate proteoglycan to be distributed in the extracellular matrix and also in the native basement membrane of surrounding normal murine tissues. Blocking and ELISA assays demonstrated that the antibodies recognized both antigens. Using techniques involving the chemical and enzymatic degradation of 35S-sulfate-labeled glycosaminoglycans, the mouse EHS tumor cells were found to produce mainly heparan sulfate (75%) along with smaller amounts of chondroitin sulfate (19%), whereas the L2 rat yolk-sac tumor produced mainly chondroitin sulfate (76%) with smaller amounts of heparan sulfate (21%). We conclude that these two murine basement-membrane-producing tumors elaborate an immunologically and structurally similar type of high-molecular-weight heparan sulfate proteoglycan which subsequently becomes incorporated into basement-membrane-like material.  相似文献   

4.
Sepharose CL-6B column chromatography of crude extracts from the slices of regenerating rat livers after partial hepatectomy and sham-operated controls labeled with [35S]sulfuric acid revealed an enhancement of [35S]sulfate incorporation into proteoglycan fractions during regeneration. The 35S-labeled proteoglycans contained heparan sulfate (more than 80% of the total) and chondroitin/dermatan sulfate. The 35S-incorporation into both glycosaminoglycans increased to maxima 3-5 days after partial hepatectomy and decreased thereafter toward the respective control levels. When [35S]sulfuric acid was replaced by [3H]glucosamine, similar results were obtained. These results suggest that the maximal stimulation of proteoglycan synthesis in regenerating rat liver follows the maximal mitosis of hepatic cells 1-2 days after partial hepatectomy. The 35S-labeled proteoglycans from regenerating liver 3 days after partial hepatectomy and control were analyzed further. They were similar in chromatographic behavior on a gel filtration or an anion-exchange column and in glycosaminoglycan composition. Their glycosaminoglycans were indistinguishable in electrophoretic mobility. However, these proteoglycans were slightly but significantly different in their affinity to octyl-Sepharose and in the molecular-weight distribution of their glycosaminoglycans.  相似文献   

5.
Kidneys were perfused with [35S]sulfate at 4 h in vitro to radiolabel sulfated proteoglycans. Glomeruli were isolated from the labeled kidneys, and purified fractions of glomerular basement membrane (GBM) were prepared therefrom. Proteoglycans were extracted from GBM fractions by use of 4 M guanidine-HCl at 4 degrees C in the presence of protease inhibitors. The efficiency of extraction was approximately 55% based on 35S radioactivity. The extracted proteoglycans were characterized by gel-filtration chromatography (before and after degradative treatments) and by their behavior in dissociative CsCl gradients. A single peak of proteoglycans with an Mr of 130,000 (based on cartilage proteoglycan standards) was obtained on Sepharose CL-4B or CL-6B. Approximately 85% of the total proteoglycans were susceptible to nitrous acid oxidation (which degrades heparan sulfates), and approximately 15% were susceptible to digestion with chondroitinase ABC (degrades chondroitin-4 and -6 sulfates and dermatan sulfate). The released glycosaminoglycan (GAG) chains had an Mr of approximately 26,000. Density gradient centrifugation resulted in the partial separation of the extracted proteoglycans into two types with different densities: a heparan sulfate proteoglycan that was enriched in the heavier fraction (p greater than 1.43 g/ml), and a chondroitin sulfate proteoglycan that was concentrated in the lighter fractions (p less than 1.41). The results indicate that two types of proteoglycans are synthesized and incorporated into the GBM that are similar in size and consist of four to five GAG chains (based on cartilage proteoglycan standards). The chromatographic behavior of the extracted proteoglycans and the derived GAG, together with the fact that the two types of proteoglycans can be partially separated into the density gradient, suggest that the heparan sulfate and chondroitin sulfate(s) are located on different core proteins.  相似文献   

6.
The cell-associated proteoglycans synthesized by three dog mastocytoma cell lines were isolated and their structural features compared. The lines were propagated as subcutaneous tumors in athymic mice for over 25 generations. In primary cell culture, all three lines incorporated [35S]sulfate into high molecular weight proteoglycans which were heterogeneous in size and glycosaminoglycan content. Two lines, BR and G, synthesized both a heparin proteoglycan (HPG) and a chondroitin sulfate proteoglycan (ChSPG) in different proportions. The third line, C2, synthesized predominantly a ChSPG with little or no detectable heparin. Gel filtration of the 35S-labeled HPG and ChSPG from the BR line on Sepharose CL-4B in dissociative conditions (4 M guanidine, Triton X-100) yielded a major polydisperse peak (Kav = 0.22) accounting for 70% of 35S activity. Under aggregating conditions (0.1 M sodium acetate) on Sepharose CL-4B, the BR proteoglycans eluted in the excluded volume. Proteoglycans from lines G and C2 also eluted in the void volume under nondissociative conditions, however the C2 line yielded additional fractions of smaller hydrodynamic size (Kav = 0.81) suggesting the presence of intracellular proteoglycan cleavage products or incompletely processed proteoglycans. As assessed by dissociative chromatography on Sepharose CL-4B, proteoglycans from the BR line were resistant to proteinase cleavage under conditions which degraded a rat chondrosarcoma proteoglycan. For all lines, glycosaminoglycans released by pronase/alkaline-borohydride had molecular weights ranging from 20,000 to 50,000 on gel filtration. For line BR, 75% of 35S-labeled glycosaminoglycans were degraded to oligosaccharides by nitrous acid, and the remaining 25% were degraded by chondroitinase ABC. Corresponding percentages for line G were 89% and 11%, and for line C2, 2% and 98%. Paper chromatography of the chondroitinase digestion products from lines BR and C2 showed products corresponding to unsaturated standards delta Di-diSB and delta Di-diSE, derived from the disaccharides IdoUA-2-SO4----GalNAc-4-SO4 and GlcUA----GalNAc-4,6-diSO4 respectively, in addition to smaller amounts of monosulfated disaccharides. Glycans from lines C2 and BR contained small quantities of a trisulfated disaccharide which was degraded to delta Di-diSB upon incubation with chondro-6-sulfatase. The results demonstrate the simultaneous presence of heparin and polysulfated chondroitin sulfate in dog mast cells of clonal origin.  相似文献   

7.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan-35SO4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin-35SO4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs were taken up by kidneys more avidly than was free [35S]sulfate. These 35S-GAGs were degraded and reutilized in the synthesis of chondroitin-35SO4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis.  相似文献   

9.
Identification of chondroitin sulfate E in human lung mast cells   总被引:3,自引:0,他引:3  
Human lung mast cells (HLMC) enriched up to 99% purity by counter current elutriation and density gradient centrifugation were labeled with 35S-sulfate to determine cell-associated proteoglycans. The 35S-labeled proteoglycans were extracted by the addition of detergent and 4 M guanidine-HCl, and separated from unincorporated precursor by Sephadex G-50 chromatography. 35S-Proteoglycans chromatographed over Sepharose 4B with a Kav of 0.48. 35S-Glycosaminoglycans separated from the parent 35S-proteoglycans by beta-elimination and chromatographed over Sepharose 4B with a Kav of 0.63. Characterization of 35S-proteoglycans by chondroitin ABC lyase treatment revealed approximately 36% of the proteoglycan to be composed of chondroitin sulfates. Analysis by HPLC of component disaccharides liberated by chondroitin ABC lyase using an amino-cyano-substituted silica column indicated that the chondroitin sulfates consisted of the monosulfated A disaccharide (GlcUA----GaINAc4SO4) (75%) and the over-sulfated E disaccharide (GlcUA----GaINAc4,6-diSO4) (25%). Nitrous acid/heparinase-susceptible heparin proteoglycans accounted for approximately 62% of the total 35S-proteoglycans present in the HLMC. Proteoglycans remaining after exposure of the original proteoglycan extract to either heparinase or chondroitin ABC lyase were of similar size, suggesting that the majority of heparin and chondroitin sulfate glycosaminoglycans were on separate protein cores. Proteoglycans extracted from HLMC were protease insensitive. Hence, in addition to heparin proteoglycans, HLMC synthesize a hitherto unrecognized quantity of chondroitin sulfate E proteoglycans.  相似文献   

10.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

11.
Sulfated proteoglycans of the dorsal skin of 8.5-day-old chick embryos have been characterized in terms of their extractability from the tissue, solubility, and sedimentation and chromatographic behavior. The proteoglycans described in this communication are those that remain soluble after dialysis against 0.5 m NaCl. Two chondroitin sulfate proteoglycans (PGCS-A and PGCS-C) and a heparan sulfate proteoglycan (PGHS) have been identified. PGCS-A is the only proteoglycan found in the medium in which the skins were cultured. Under associative conditions (0.4 M guanidine-HCl) PGCS-A and PGHS are extracted. The dissociative solvents (4 M guanidine-HCl) extract more PGCS-A and PGCS-C. PGCS-C has been shown to interact with hyaluronic acid to form aggregates. These proteoglycans have densities ranging from 1.49 to at least 1.59 g/ml. In contrast cartilage proteoglycans that can aggregate with hyaluronic acid have a density of at least 1.59 g/ml. It was not possible to determine if the PGCS-C aggregates exist in vivo.  相似文献   

12.
Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [35S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The cell-associated 35S-labeled proteoglycans were extracted from the MMC-enriched cell preparation by the addition of detergent and 4 M guanidine HCl and were partially purified by density gradient centrifugation. The isolated proteoglycans were of approximately 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. Analysis by high-performance liquid chromatography of chondroitinase ABC-treated 35S-labeled proteoglycans from these rat MMC revealed that the chondroitin sulfate chains consisted predominantly of disaccharides with the disulfated di-B structure (IdUA-2SO4----GalNAc-4SO4) and disaccharides with the monosulfated A structure (G1cUA----GalNAc-4SO4). The ratio of disaccharides of the di-B to A structure ranged from 0.4 to 1.6 in three experiments. Small amounts of chondroitin sulfate E disaccharides (GlcUA----GalNAc-4,6-diSO4) were also detected in the chondroitinase ABC digests of the purified rat MMC proteoglycans, but no nitrous acid-susceptible heparin/heparan sulfate glycosaminoglycans were detected. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain such a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched population of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leukemia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans as well as rat serosal mast cell heparin proteoglycans are all highly sulfated, protease-resistant proteoglycans.  相似文献   

13.
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes.  相似文献   

14.
To characterize proteoglycans in the prechondrogenic limb bud, proteoglycans were extracted with 4 M guanidine HCl containing a detergent and protease inhibitors from Day 13 fetal rat limb buds which had been labeled with [35S]sulfate for 3 h in vitro. About 90% of 35S-labeled proteoglycans was solubilized under the conditions used. The proteoglycan preparation was separated by DEAE-Sephacel column chromatography into three peaks; peak I eluted at 0.45 M NaCl concentration, peak II at 0.52 M, and peak III at 1.4 M. Peaks I and III were identified as proteoglycans bearing heparan sulfate side chains. The heparan sulfate proteoglycan in peak III was larger in hydrodynamic size than the proteoglycan in peak I. The heparan sulfate side chains of peak III proteoglycan were smaller in the size and more abundant in N-sulfated glucosamine than those of peak I proteoglycan. Peak II contained a chondroitin sulfate proteoglycan with a core protein of a doublet of Mr 550,000 and 500,000. The chondroitin sulfate proteoglycan was easily solubilized with a physiological salt solution and the heparan sulfate proteoglycan in peak I was partially solubilized with the physiological salt solution. The remainder of the proteoglycan in peak I and the heparan sulfate proteoglycan in peak III could be solubilized effectively only with a solution containing a detergent, such as nonanoyl-N-methylglucamide. This observation indicates the difference in the localization among these three proteoglycans in the developing rat limb bud.  相似文献   

15.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

16.
Chondroitin sulfate represents approximately 15% of the 35SO4-labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product.  相似文献   

17.
Basophilic leukocytes from two patients with myelogenous leukemia were enriched to a purity of 10 to 45% by density gradient centrifugation. Ultrastructurally, these basophilic leukocytes contained segmented nuclei and granules with reticular patterns resembling those of normal basophils, and other granules with scroll and grating patterns resembling those of normal connective tissue mast cells. The 35S-labeled macromolecules isolated from these cells were approximately 140,000 m.w. Pronase-resistant proteoglycans bearing approximately 15,000 m.w. glycosaminoglycans. On incubation with chondroitinase ABC, nitrous acid, and heparinase, the 35S-labeled proteoglycans were degraded 50 to 84%, 16 to 43%, and 8 to 37%, respectively, indicating the presence of both chondroitin sulfate and heparin. As assessed by high performance liquid chromatography, the 35S-labeled chondroitin sulfate disaccharides liberated by chondroitinase ABC treatment were approximately 95% monosulfated chondroitin sulfate A and approximately 5% disulfated chondroitin sulfate E. The presence of heparin was confirmed by two-dimensional cellulose acetate electrophoresis of the 35S-labeled glycosaminoglycans. Cell preparations, enriched to 75% basophilic leukocytes by sorting for IgE+ cells, also synthesized 35S-labeled proteoglycans containing chondroitin sulfate and heparin. In one experiment, treatment of the cells with 1 microM calcium ionophore A23187 resulted in a 12% net release of both chondroitin sulfate and heparin containing 35S-labeled proteoglycans, a 57% net release of histamine, and the de novo generation of 8, 8, and 0.16 ng of immunoreactive equivalents of prostaglandin D2, leukotriene C4, and leukotriene B4, respectively, per 10(6) cells. Because only mast cells have been found to contain Pronase-resistant heparin proteoglycans, to generate PGD2 on cell activation, and to contain granules with scroll and grating patterns, these findings indicate that in some patients with myelogenous leukemia there are basophilic cells that possess properties of tissue mast cells.  相似文献   

18.
Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells   总被引:5,自引:0,他引:5  
Bovine corneal endothelial (BCE) cells seeded and grown on plastic dishes were labeled with 35S-sulfate or 3H-glucosamine for 48 h at various phases of growth of the cultures. Newly synthesized proteoglycans were isolated from the culture medium and from the extracellular matrix (ECM) produced by the BCE cells, and the glycosaminoglycan (GAG) component of the proteoglycans was analyzed. Cells actively proliferating on plastic surfaces secreted an ECM that contained heparan sulfate as the major 35S-labeled GAG (86%) and dermatan sulfate as a minor component (13%). Upon reaching confluence, the BCE cells incorporated 35S-labeled chondroitin sulfate (20%), as well as heparan sulfate (66%) and dermatan sulfate (14%), into the EC. Seven-day postconfluent cells incorporated newly synthesized heparan sulfate and dermatan sulfate into the matrix in approximately equal proportions. Dermatan sulfate was the main 35S-labeled GAG (60-65%) in the medium of both confluent and postconfluent cultures. 35S-Labeled chondroitin sulfate (20-25%) and heparan sulfate (15%) were also secreted into the culture medium. The type of GAG incorporated into newly synthesized ECM was affected when BCE cells were seeded onto ECM-coated dishes instead of plastic. BCE cells actively proliferating on ECM-coated dishes incorporated newly synthesized heparan sulfate and dermatan sulfate into the ECM in a ratio that was very similar to the ratio of these GAGs in the underlying ECM. Addition of mitogens such as fibroblast growth factor (FGF) to the culture medium altered the type of GAG synthesized and incorporated into the ECM by BCE cells seeded onto ECM-coated dishes if the cells were actively growing, but had no effect on postconfluent cultures.  相似文献   

19.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

20.
The effect of p-nitrophenyl-beta-D-xyloside on proteoglycan synthesis and extracellular matrix (ECM) formation by cultured bovine corneal endothelial (BCE) cells was investigated. BCE cells actively proliferating on plastic dishes produced in the absence of xyloside an ECM containing various proteoglycans. Heparan sulfate was the main 35S-labeled glycosaminoglycan component (83%). Dermatan sulfate (14%) and chondroitin sulfate (3%) were also present. Exposure of actively proliferating BCE cells to xyloside totally inhibited synthesis of proteoglycans containing dermatan sulfate or chondroitin sulfate and caused an 86% inhibition of heparan sulfate proteoglycan synthesis. The heparan sulfate proteoglycans that were extracted from the ECM produced by BCE cells exposed to xyloside had a smaller size and a reduced charge density compared to their counterparts extracted from the ECM of cultures not exposed to xyloside. In contrast to the inhibitory effect of the xyloside on proteoglycan synthesis, exposure of actively proliferating BCE cells to xyloside stimulated synthesis of free chondroitin sulfate and heparan sulfate chains. All of the xyloside-initiated glycosaminoglycan chains were secreted into the culture medium. The proteoglycan-depleted matrices produced by BCE cells exposed to xyloside were used to study the effect of these matrices on proteoglycan synthesis by BCE cells. BCE cells growing on proteoglycan-depleted ECM showed a considerable increase in the rate of proteoglycan synthesis compared to BCE cells growing on normal ECM. Moreover, the pattern of glycosaminoglycan synthesis by BCE cells growing on proteoglycan-depleted ECM was changed to one which resembled that of BCE cells actively proliferating on plastic dishes. It is postulated that BCE cells are able to recognize when an ECM is depleted of proteoglycan and to respond to it by increasing their rate of proteoglycan synthesis and incorporation into the ECM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号