首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Staphylocoagulase (SC) is a protein secreted by the human pathogen, Staphylococcus aureus, that activates human prothrombin (ProT) by inducing a conformational change. SC-bound ProT efficiently clots fibrinogen, thus bypassing the physiological blood coagulation pathway. The crystal structure of a fully active SC fragment, SC-(1-325), bound to human prethrombin 2 showed that the SC-(1-325) N terminus inserts into the Ile(16) pocket of prethrombin 2, thereby inducing expression of a functional catalytic site in the cognate zymogen without peptide bond cleavage. As shown here, SC-(1-325) binds to bovine and human ProT with similar affinity but activates the bovine zymogen only very poorly. By contrast to the approximately 2-fold difference in chromogenic substrate kinetic constants between human thrombin and the SC-(1-325).human (pro)thrombin complexes, SC-(1-325).bovine ProT shows a 3,500-fold lower k(cat)/K(m) compared with free bovine thrombin, because of a 47-fold increase in K(m) and a 67-fold decrease in k(cat). The SC-(1-325).bovine ProT complex is approximately 5,800-fold less active compared with its human counterpart. Comparison of human and bovine fibrinogen as substrates of human and bovine thrombin and the SC-(1-325).(pro)thrombin complexes indicates that the species specificity of SC-(1-325) cofactor activity is determined primarily by differences in conformational activation of bound ProT. These results suggest that the catalytic site in the SC-(1-325).bovine ProT complex is incompletely formed. The current crystal structure of SC-(1-325).bovine thrombin reveals that SC would dock similarly to the bovine proenzyme, whereas the bovine (pro)thrombin-characteristic residues Arg(144) and Arg(145) would likely interfere with insertion of the SC N terminus, thus explaining the greatly reduced activation of bovine ProT.  相似文献   

2.
Staphylocoagulase (SC) is a potent nonproteolytic prothrombin (ProT) activator and the prototype of a newly established zymogen activator and adhesion protein family. The staphylocoagulase fragment containing residues 1-325 (SC-(1-325)) represents a new type of nonproteolytic activator with a unique fold consisting of two three-helix bundle domains. The N-terminal, domain 1 of SC (D1, residues 1-146) interacts with the 148 loop of thrombin and prethrombin 2 and the south rim of the catalytic site, whereas domain 2 of SC (D2, residues 147-325) occupies (pro)exosite I, the fibrinogen (Fbg) recognition exosite. Reversible conformational activation of ProT by SC-(1-325) was used to create novel analogs of ProT covalently labeled at the catalytic site with fluorescence probes. Analogs selected from screening 10 such derivatives were used to characterize quantitatively equilibrium binding of SC-(1-325) to ProT, competitive binding with native ProT, and SC domain interactions. The results support the conclusion that SC-(1-325) binds to a single site on fluorescein-labeled and native ProT with indistinguishable dissociation constants of 17-72 pM. The results obtained for isolated SC domains indicate that D2 binds ProT with approximately 130-fold greater affinity than D1, yet D1 binding accounts for the majority of the fluorescence enhancement that accompanies SC-(1-325) binding. The SC-(1-325).(pro)thrombin complexes and free thrombin showed little difference in substrate specificity for tripeptide substrates or with their natural substrate, Fbg. Lack of a significant effect of blockage of (pro)exosite I of (pro)thrombin by SC-(1-325) on Fbg cleavage indicates that a new Fbg substrate recognition exosite is expressed on the SC-(1-325).(pro)thrombin complexes. Our results provide new insight into the mechanism that mediates zymogen activation by this prototypical bacterial activator.  相似文献   

3.
The specificity of thrombin for procoagulant and anticoagulant substrates is regulated allosterically by Na+. Ordered cleavage of prothrombin (ProT) at Arg320 by the prothrombinase complex generates proteolytically active, meizothrombin (MzT), followed by cleavage at Arg271 to produce thrombin and fragment 1.2. The alternative pathway of initial cleavage at Arg271 produces the inactive zymogen form, the prethrombin 2 (Pre 2).fragment 1.2 complex, which is cleaved subsequently at Arg320. Cleavage at Arg320 of ProT or prethrombin 1 (Pre 1) activates the catalytic site and the precursor form of exosite I (proexosite I). To determine the pathway of expression of Na+-(pro)exosite I linkage during ProT activation, the effects of Na+ on the affinity of fluorescein-labeled hirudin-(54-65) ([5F]Hir-(54-65)(SO-3)) for the zymogens, ProT, Pre 1, and Pre 2, and for the proteinases, MzT and MzT-desfragment 1 (MzT(-F1)) were quantitated. The zymogens showed no significant linkage between proexosite I and Na+, whereas cleavage at Arg320 caused the affinities of MzT and MzT(-F1) for [5F]Hir-(54-65)(SO-3) to be enhanced by Na+ 8- to 10-fold and 5- to 6-fold, respectively. MzT and MzT(-F1) showed kinetically different mechanisms of Na+ enhancement of chromogenic substrate hydrolysis. The results demonstrate for the first time that MzT is regulated allosterically by Na+. The results suggest that the distinctive procoagulant substrate specificity of MzT, in activating factor V and factor VIII on membranes, and the anticoagulant, membrane-modulated activation of protein C by MzT bound to thrombomodulin are regulated by Na+-induced allosteric transition. Further, the Na+ enhancement in MzT activity and exosite I affinity may function in directing the sequential ProT activation pathway by accelerating thrombin formation from the MzT fast form.  相似文献   

4.
Binding of prothrombin, prethrombin 1, prethrombin 2 and thrombin to fibrinogen-Sepharose was studied. Thrombin and prethrombin 2 bound to fibrinogen-Sepharose, while prethrombin 1 and prothrombin did not. Bound thrombin and prethrombin 2 were recovered from the column by eluting with 0.1 M NaCl/0.05 M Tris-HCl buffer (pH 7.4). The affinity of thrombin and prethrombin 2 to fibrinogen-Sepharose depended on ionic strength and reached a maximum at 50 mm concentration. Prethrombin 2 interacts with fibrinogen as well as thrombin; and prothrombin fragment 1.2 is not important in the formation of this complex. Thus, prethrombin 2, which is a precursor of thrombin without measurable enzymatic activity and which lacks the single cleavage at Arg-322-Ile-323 present in thrombin, has the same or very similar structural conformation as thrombin and has the same macromolecular substrate recognition site. These results confirm the earlier results that active center is not necessary in fibrinogen-thrombin interaction.  相似文献   

5.
The conversion of prothrombin to thrombin is catalyzed by prothrombinase, an enzyme complex composed of the serine proteinase factor Xa and a cofactor protein, factor Va, assembled on membranes. Kinetic studies indicate that interactions with extended macromolecular recognition sites (exosites) rather than the active site of prothrombinase are the principal determinants of binding affinity for substrate or product. We now provide a model-independent evaluation of such ideas by physical studies of the interaction of substrate derivatives and product with prothrombinase. The enzyme complex was assembled using Xa modified with a fluorescent peptidyl chloromethyl ketone to irreversibly occlude the active site. Binding was inferred by prethrombin 2-dependent perturbations in the fluorescence of Oregon Green(488) at the active site of prothrombinase. Active site-independent binding was also unequivocally established by fluorescence resonance energy transfer between 2,6-dansyl tethered to the active site of Xa and eosin tethered to the active sites of either thrombin or meizothrombin des fragment 1. Comparable interprobe distances obtained from these measurements suggest that substrate and product interact equivalently with the enzyme. Competition established the ability of a range of substrate or product derivatives to bind in a mutually exclusive fashion to prothrombinase. Equilibrium dissociation constants obtained for the active site-independent binding of prothrombin, prethrombin 2, meizothrombin des fragment 1 and thrombin to prothrombinase were comparable with their affinities inferred from kinetic studies using active enzyme. Our findings directly establish that binding affinity is principally determined by the exosite-mediated interaction of either the substrate, both possible intermediates, or product with prothrombinase. A single type of exosite binding interaction evidently drives affinity and binding specificity through the stepwise reactions necessary for the two cleavage reactions of prothrombin activation and product release.  相似文献   

6.
Hirugen, a synthetic dodecapeptide corresponding to the carboxyl-terminal amino acids 53-64 of hirudin, binds within a deep groove in thrombin that contains a cationic region referred to as the anion-binding exosite. This region is important in many of the binary interactions of thrombin with macromolecular substrates and cofactors. Fluorescein-labeled hirugen was used to probe which steps in the prothrombin activation process generate this anion-binding exosite. Two activation cleavage sites exist in bovine prothrombin. Cleavage at Arg274-Thr275 releases the activation fragments to generate the thrombin precursor, prethrombin 2. Cleavage of prothrombin within a disulfide loop at Arg323-Ile324 leads to formation of meizothrombin with no loss of peptide material but with formation of amidolytic activity. Cleavage of the same bond in prethrombin 2 generates thrombin. Hirugen, labeled at the amino terminus with fluorescein isothiocyanate, does not bind to prothrombin but does bind to thrombin (Kd = 9.6 +/- 1.2 x 10(-8) M), prethrombin 2 (Kd = 1.3 +/- 0.1 x 10(-7) M), thrombin-fragment-2 complex (Kd = 1.1 +/- 0.2 x 10(-6) M), and meizothrombin (Kd = 1.6 +/- 0.5 x 10(-8) M). Prothrombin fragment-2 and hirugen both bind independently to thrombin. A ternary complex can form with hirugen and fragment-2 and either thrombin or prethrombin 2, suggesting that fragment-2 and hirugen bind to discrete sites. Hirugen also alters the active site conformation of thrombin as detected by modulation of synthetic substrate hydrolytic activity. These studies suggest that conformational changes, rather than alleviating steric hindrance, are responsible for the formation of the hirugen-binding site during prothrombin activation. Furthermore, this conformational change can be effected by the cleavage of either of the two bonds required for activation of prothrombin.  相似文献   

7.
Prothrombin (Pro) activation by factor Xa generates the thrombin catalytic site and exosites I and II. The role of fragment 1 (F1) in the pathway of exosite I expression during Pro activation was characterized in equilibrium binding studies using hirudin(54-65) labeled with 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate ([NBD]Hir(54-65)(SO3-)) or 5-(carboxy)fluorescein ([5F]Hir(54-65)(SO3-)). [NBD]Hir(54-65)(SO3-) distinguished exosite I environments on Pro, prethrombin 1 (Pre 1), and prethrombin 2 (Pre 2) but bound with the same affinities as [5F]Hir(54-65)(SO3-). Conversion of Pro to Pre 1 caused a 7-fold increase in affinity for the peptides. Conversely, fragment 1.2 (F1.2) decreased the affinity of Pre 2 for [5F]Hir(54-65)(SO3-) by 3-fold. This was correlated with a 16-fold increased affinity of F1.2 for Pre 2 in comparison to thrombin, demonstrating an enhancing effect of F1 on F1.2 binding. The active intermediate, meizothrombin, demonstrated a 50- to 220-fold increase in exosite affinity. Free thrombin and thrombin.F1.2 complex bound [5F]Hir(54-65)(SO3-) with indistinguishable affinity, indicating that the effect of F1 on peptide binding was eliminated upon expression of catalytic activity and exosite I. The results demonstrate a new zymogen-specific role for F1 in modulating the affinity of ligands for exosite I. This may reflect a direct interaction between the F1 and Pre 2 domains in Pro that is lost upon folding of the zymogen activation domain. The effect of F1 on (pro)exosite I and the role of (pro)exosite I in factor Va-dependent substrate recognition suggest that the Pro activation pathway may be regulated by (pro)exosite I interactions with factor Va.  相似文献   

8.
Notecarin D (NotD) is a prothrombin (ProT) activator in the venom of the tiger snake, Notechis scutatus, and a factor Xa (FXa) homolog. NotD binds specifically to the FXa binding site expressed on factor V (FV) upon activation to factor Va (FVa) by thrombin. NotD active site-labeled with 5-fluorescein ([5F]FFR-NotD) binds FV and FVa with remarkably high affinity in the absence of phospholipids (K(D) 12 and ≤ 0.01 nm, respectively). In the presence of membranes, the affinity of [5F]FFR-NotD for FVa is similar, but increased ~55-fold for FV. Binding of FXa active site-labeled with Oregon Green to FV and FVa in the presence of phospholipids is ~5,000- and ~80-fold weaker than [5F]FFR-NotD, respectively. NotD reports FVa and not FV binding by a 3-fold increase in tripeptide substrate hydrolysis, demonstrating allosteric regulation by FVa. The NotD·FVa·membrane complex activates ProT with K(m)((app)) similar to prothrombinase, and ~85-fold weaker without membranes. Active site-blocked NotD exhibits potent anticoagulant activity in plasma thrombin generation assays, representing inhibition of productive prothrombinase assembly and possible disruption of FXa inhibition by the tissue factor pathway inhibitor. The results show that high affinity binding of NotD to FVa is membrane-independent, unlike the strict membrane dependence of FXa for high affinity FVa binding.  相似文献   

9.
Kinetic studies support the concept that protein substrate recognition by the prothrombinase complex of coagulation is achieved by interactions at extended macromolecular recognition sites (exosites), distinct from the active site of factor Xa within the complex. We have used this formal kinetic model and a monoclonal antibody directed against Xa (alphaBFX-2b) to investigate the contributions of surfaces on the proteinase to exosite-mediated protein substrate recognition by prothrombinase. alphaBFX-2b bound reversibly to a fluorescent derivative of factor Xa (K(d) = 17.1 +/- 5.6 nm) but had no effect on active site function of factor Xa or factor Xa saturably assembled into prothrombinase. In contrast, alphaBFX-2b was a slow, tight binding inhibitor of the cleavage of either prethrombin 2 or meizothrombin des-fragment 1 by prothrombinase (K(i)(*) = 0.55 +/- 0.05 nm). Thus, alphaBFX-2b binding to factor Xa within prothrombinase selectively leads to the inhibition of protein substrate cleavage without interfering with active site function. Inhibition kinetics could adequately be accounted for by a kinetic model in which prethrombin 2 and alphaBFX-2b bind in a mutually exclusive way to prothrombinase. These are properties expected of an exosite-directed inhibitor. The site(s) on factor Xa responsible for antibody binding were evaluated by identification of immunoreactive fragments following chemical digestion of human and bovine Xa and were further confirmed with a series of recombinantly expressed fragments. These approaches suggest that residues 82-91 and 102-116 in the proteinase domain contribute to alphaBFX-2b binding. The data establish this antibody as a prototypic exosite-directed inhibitor of prothrombinase and suggest that the occlusion of a surface on factor Xa, spatially removed from the active site, is sufficient to block exosite-dependent recognition of the protein substrate by prothrombinase.  相似文献   

10.
The X-ray crystal structure of prethrombin2 (pre2), the immediate inactive precursor of alpha-thrombin, has been determined at 2.0 A resolution complexed with hirugen. The structure has been refined to a final R-value of 0.169 using 14,211 observed reflections in the resolution range 8.0-2.0 A. A total of 202 water molecules have also been located in the structure. Comparison with the hirugen-thrombin complex showed that, apart from the flexible beginning and terminal regions of the molecule, there are 4 polypeptide segments in pre2 differing in conformation from the active enzyme (Pro 186-Asp 194, Gly 216-Gly 223, Gly 142-Pro 152, and the Arg 15-Ile 16 cleavage region). The formation of the Ile 16-Asp 194 ion pair and the specificity pocket are characteristic of serine protease activation with the conformation of the catalytic triad being conserved. With the determination of isomorphous structures of hirugen-thrombin and D-Phe-Pro-Arg chloromethyl ketone (PPACK)-thrombin, the changes that occur in the active site that affect the kinetics of chromogenic substrate hydrolysis on binding to the fibrinogen recognition exosite have been determined. The backbone of the Ala 190-Gly 197 segment in the active site has an average RMS difference of 0.55 A between the 2 structures (about 3.7 sigma compared to the bulk structure). This segment has 2 type II beta-bends, the first bend showing the largest shift due to hirugen binding. Another important feature was the 2 different conformations of the side chain of Glu 192. The side chain extends to solvent in hirugen-thrombin, which is compatible with the binding of substrates having an acidic residue in the P3 position (protein-C, thrombin platelet receptor). In PPACK-thrombin, the side chain of Asp 189 and the segment Arg 221A-Gly 223 move to provide space for the inhibitor, whereas in hirugen-thrombin, the Ala 190-Gly 197 movement expands the active site region. Although 8 water molecules are expelled from the active site with PPACK binding, the inhibitor complex is resolvated with 5 other water molecules.  相似文献   

11.
The major active form of human thrombin, alpha-thrombin, was analyzed by hydrophobic interaction high-performance liquid chromatography (HIC-HPLC). The chromatographic system included a polymeric phenyl column and elution was performed by a gradient, 2-0M sodium chloride (5-20 min). Total analysis time was 30 min per injection. By this method, a good resolution between alpha-thrombin and the proteolytically modified thrombin forms, beta- and gamma-thrombin, was obtained. In addition, the thrombin preforms, prothrombin, prethrombin 1, and prethrombin 2, were also resolved from alpha-thrombin in the system. The results from the HIC method were compared to those obtained from non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By this high-resolution chromatographic method, the rapid analysis of purified alpha-thrombin is possible.  相似文献   

12.
Staphylocoagulase with a molecular weight of 64,000 and subspecies ranging in molecular weight from 36,000 to 64,000 were purified by affinity column chromatography on bovine prothrombin-Sepharose 4B from the culture filtrates of the Staphylococcus aureus strains, st-213 and 104. The samples containing all molecular species from both strains had the same NH2-terminal sequence, Ile-Val-Thr-Lys-Asp-Tyr-Ser-Lys-Glu-, implying that the molecular heterogeneity was due to proteolytic degradation to some extent of the COOH-terminal portion during cultivation or purification. Staphylocoagulase (Mr = 64,000) from strain st-213 formed an active complex, "staphylothrombin," with human prothrombin in a molar ratio of 1 to 1.1. Staphylothrombin was unstable at 37 degrees C and some portions of staphylocoagulase in the complex were rapidly degraded into small fragments, together with the fragmentation of prothrombin into prethrombin 1 and prothrombin fragment 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent fluorography for the products of prothrombin activation by staphylocoagulase in the presence of [3H]diisopropylphosphofluoridate (DFP) demonstrated the formation of a DFP-sensitive active site in the prothrombin molecule, and no cleavage of the Arg-Ile bond linking the A and B chains of alpha-thrombin was found. The enzymatic properties including the pH-dependency of the activity, substrate specificity and behavior towards thrombin inhibitors of staphylothrombin differed from those of alpha-thrombin, although the active site titration of staphylothrombin with p-nitrophenyl-p'-guanidinobenzoate showed 0.95 +/- 0.2 mol of active site/mol of enzyme.  相似文献   

13.
Activation of prothrombin (Pro) by factor Xa to form thrombin occurs by proteolysis of Arg271-Thr272 and Arg320-Ile321, resulting in expression of regulatory exosites I and II. Cleavage of Pro by thrombin liberates fragment 1 and generates the zymogen analog, prethrombin 1 (Pre 1). The properties of exosite I on Pre 1 and its factor Xa activation intermediates were characterized in spectroscopic and equilibrium binding studies using the fluorescein-labeled probe, hirudin(54-65) ([5F]Hir(54-65)-(SO3-)). Prethrombin 2 (Pre 2), formed by factor Xa cleavage of Pre 1 at Arg271-Thr272, had the same affinity for hirudin(54-65) peptides as Pre 1 in the absence or presence of near-saturating fragment 2 (F2). Pre 2 and thrombin also had indistinguishable affinities for F2. By contrast, cleavage of Pre 1 at Arg320-Ile321, to form active meizothrombin des-fragment 1 MzT(-F1), showed a 11- to 20-fold increase in affinity for hirudin(54-65), indistinguishable from the 13- to 20-fold increase seen for conversion of Pre 2 to thrombin. Thus, factor Xa cleavage of Pre 1 at Arg271-Thr272 does not effect exosite I expression, whereas cleavage at Arg320-Ile321 results in concomitant activation of the catalytic site and exosite I. Furthermore, expression of exosite I on the Pre 1 activation intermediates is not modulated by F2, and exosite II is not activated conformationally. The differential expression of exosite I affinity on the Pre 1 activation intermediates and the previously demonstrated role of (pro)exosite I in factor Va-dependent substrate recognition suggest that changes in exosite I expression may regulate the rate and direction of the Pre 1 activation pathway.  相似文献   

14.
Prothrombin is conformationally activated by von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus through insertion of the NH2-terminal residues of vWbp into the prothrombin catalytic domain. The rate of prothrombin activation by vWbp(1–263) is controlled by a hysteretic kinetic mechanism initiated by substrate binding. The present study evaluates activation of prothrombin by full-length vWbp(1–474) through activity progress curve analysis. Additional interactions from the COOH-terminal half of vWbp(1–474) strengthened the initial binding of vWbp to prothrombin, resulting in higher activity and an ∼100-fold enhancement in affinity. The affinities of vWbp(1–263) or vWbp(1–474) were compared by equilibrium binding to the prothrombin derivatives prethrombin 1, prethrombin 2, thrombin, meizothrombin, and meizothrombin(des-fragment 1) and their corresponding active site-blocked analogs. Loss of fragment 1 in prethrombin 1 enhanced affinity for both vWbp(1–263) and vWbp(1–474), with a 30–45% increase in Gibbs free energy, implicating a regulatory role for fragment 1 in the activation mechanism. Active site labeling of all prothrombin derivatives with d-Phe-Pro-Arg-chloromethyl ketone, analogous to irreversible binding of a substrate, decreased their KD values for vWbp into the subnanomolar range, reflecting the dependence of the activating conformational change on substrate binding. The results suggest a role for prothrombin domains in the pathophysiological activation of prothrombin by vWbp, and may reveal a function for autocatalysis of the vWbp·prothrombin complexes during initiation of blood coagulation.  相似文献   

15.
Two pathways are possible during the proteolytic formation of alpha-thrombin (alpha-IIa) from prothrombin (II) or prethrombin 1 (P1). One of the pathways, with prethrombin 2 or prethrombin 2 associated with fragment 2 (P2F2) as intermediates, has long been known to exist when activation is catalyzed by Factor Xa (Xa) alone. The second pathway, with meizothrombin or meizothrombin (des fragment 1) (MzIIa(-F1)) as intermediate, has been shown to exist when Factor Va and phospholipids are present with Xa. Until now, MzIIa(-F1) has not been detected in reactions catalyzed by Xa alone. In this study, we demonstrate that P1 activation by Xa alone occurs via both pathways, and we provide rate constants and kinetic equations for calculating the relative contributions of each of the pathways to the formation of alpha-IIa by Xa. Investigation of the initial rates of proteolytic cleavage of P2F2 and P1 by Xa alone indicated first-order dependence on substrate concentration with no evidence of saturation of Xa with either substrate at concentrations as high as 200 microM. Apparent second-order rate constants (kc/Km) of 113 +/- 9 M-1 s-1 for the formation of thrombin from P2F2 and 1,410 +/- 19 M-1 s-1 for the disappearance of P1 were determined at pH 7.5, 25 degrees C, 10 mM CaCl2, 0.15 M ionic strength. A two-step sequential first-order pathway employing these rate constants for thrombin activity production from P1 via P2F2 could not, however, account for the quantity of thrombin that was produced during the early stages of P1 activation. Addition of a parallel first-order reaction to produce thrombin activity from P1 independently of P2F2, tentatively identified as the formation of MzIIa(-F1), yielded progress curves in quantitative agreement with the experimental data. kc/Km for the parallel reaction was estimated to be 98 +/- 10 M-1 s-1. Independent determination of the second-order rate constant for the cleavage of isolated MzIIa (-F1), 15,000 +/- 420 M-1 s-1, indicated that MzIIa(-F1) could meet the kinetic requirements for an intermediate in the parallel activation pathway. The transient formation of MzIIa (-F1), as well as the generation of alpha-IIa, was directly demonstrated during activation of P1 by active site-affinity labeling of the reaction products with a biotin derivative of D-Phe-Pro-Arg chloromethyl ketone and visualization by semiquantitative Western blotting.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Mouse and human prothrombin (ProT) active site specifically labeled with d-Phe-Pro-Arg-CH2Cl (FPR-ProT) inhibited tissue factor-initiated thrombin generation in platelet-rich and platelet-poor mouse and human plasmas. FPR-prethrombin 1 (Pre 1), fragment 1 (F1), fragment 1.2 (F1.2), and FPR-thrombin produced no significant inhibition, demonstrating the requirement for all three ProT domains. Kinetics of inhibition of ProT activation by the inactive ProTS195A mutant were compatible with competitive inhibition as an alternate nonproductive substrate, although FPR-ProT deviated from this mechanism, implicating a more complex process. FPR-ProT exhibited ∼10-fold more potent anticoagulant activity compared with ProTS195A as a result of conformational changes in the ProT catalytic domain that induce a more proteinase-like conformation upon FPR labeling. Unlike ProT and ProTS195A, the pathway of FPR-ProT cleavage by prothrombinase was redirected from meizothrombin toward formation of the FPR-prethrombin 2 (Pre 2)·F1.2 inhibitory intermediate. Localization of ProT labeled with Alexa Fluor® 660 tethered through FPR-CH2Cl ([AF660]FPR-ProT) during laser-induced thrombus formation in vivo in murine arterioles was examined in real time wide-field and confocal fluorescence microscopy. [AF660]FPR-ProT bound rapidly to the vessel wall at the site of injury, preceding platelet accumulation, and subsequently to the thrombus proximal, but not distal, to the vessel wall. [AF660]FPR-ProT inhibited thrombus growth, whereas [AF660]FPR-Pre 1, lacking the F1 membrane-binding domain did not bind or inhibit. Labeled F1.2 localized similarly to [AF660]FPR-ProT, indicating binding to phosphatidylserine-rich membranes, but did not inhibit thrombosis. The studies provide new insight into the mechanism of ProT activation in vivo and in vitro, and the properties of a unique exosite-directed prothrombinase inhibitor.  相似文献   

17.
Prothrombin activation complex is located at a phospholipid surface on activated platelets. To see whether the thrombin domain of the molecule plays a role in the interaction with lipids, we investigated the direct interaction of human α-thrombin and its precursor prethrombin 2 with phospholipid monolayers of varous compositions (PS/PC). Adsorption of the labeled proteins was determined by surface radioactive measurements. Penetrations of the proteins in the lipid layer was inferred from capacitance variation of the monolayer measured by a palarography. Disulfide bridges reduced at the electrode were determined by cycle voltametry.In all the cases studied, although in different manners thrombin was found both to adsorb and penetrate the lipid layer, whereas prethrombin 2 did not penetrate pure phosphatidylcholine (PC). In the case of thrombin but not of prethrombin 2, penetration is accompanied by S-S reduction which is maximum at 10 per cent of phosphatidylserine (PS). This indicate a different orientation for prethrombin 2 and thrombin in the lipid layer. This observation might be of importance for the comprehension of the architecture of the prothrombin might be of for the regulation of thrombin formation within the complex.  相似文献   

18.
Thrombotic thrombocytopenic purpura (TTP) is characterized by widespread platelet thrombi in arterioles and capillaries. Unusually large or multimeric von Willebrand factor, as well as one or more platelet-agglutinating factors, have been implicated in the pathogenesis of TTP. But, the actual mechanisms of platelet agglutination have not been satisfactorily explained. Recent studies suggested the 37-kDa platelet-agglutinating protein (PAP) p37 to be partially responsible for the formation of platelet thrombi in patients with TTP. We studied mobility in SDS-PAGE, the sequence of N-terminal amino acid residues, DNA and antigenic characteristics of PAP p37, which might be related to the pathogenesis of TTP. PAP p37 was purified from the plasma of a 31-year-old male Korean patient with acute TTP. The findings are as follows: (1) We compared PAP p37 with thrombin through the use of SDS-PAGE, either with or without beta-mercaptoethanol. PAP p37 did not appear to be cleaved between the A- and B-chains of prethrombin 2. However, thrombin did cleave between those of prethrombin 2, but linked with disulfide bridge. (2) N-terminal 21 amino acid sequence of PAP p37 was T-F-G-S-G- E-A-D-X-G-L-R-P-L-F-E-K-K-S-L-E. It appeared to be identical to that of 285-305 amino acid residues of human prothrombin (prethrombin 2). (3) No prothrombin gene DNA mutation was revealed. (4) The antigenicity of PAP p37 was similar to thrombin, which was a result of the competitive binding against the anti-thrombin antibody. With these results, we conclude that PAP p37 has similar characteristics to prethrombin2.  相似文献   

19.
Activation of prothrombin by factor X(a) requires proteolysis of two bonds and is commonly assumed to occur via by two parallel, sequential pathways. Hydrolysis of Arg(322)-Ile(323) produces meizothrombin (MzII(a)) as an intermediate, while hydrolysis of Arg(273)-Thr(274) produces prethrombin 2-fragment 1.2 (Pre2-F1.2). Activation by human factor X(a) of human prothrombin was examined in the absence of factor V(a) and in the absence and presence of bovine phosphatidylserine (PS)/palmitoyloleoylphosphatidylcholine (25:75) membranes. Four sets of data were collected: fluorescence of an active site probe (DAPA) was sensitive to thrombin, MzII(a), and Pre2-F1.2; a synthetic substrate (S-2238) detected thrombin or MzII(a) active site formation; and SDS-PAGE detected both intermediates and thrombin. The fluorescence data provided an internal check on the active site and SDS-PAGE measurements. Kinetic constants for conversion of intermediates to thrombin were measured directly in the absence of membranes. Both MzII(a) and Pre2-F1.2 were consumed rapidly in the presence of membranes, so kinetic constants for these reactions had to be estimated as adjustable parameters by fitting three data sets (thrombin and MzII(a) active site formation and Pre2 appearance) simultaneously to the parallel-sequential model. In the absence of membranes, this model successfully described the data and yielded a rate constant, 44 M(-1) s(-1), for the rate of MzII(a) formation. By contrast, the parallel-sequential model could not describe prothrombin activation in the presence of optimal concentrations of PS-containing membranes without assuming that a pathway existed for converting prothrombin directly to thrombin without release from the membrane-enzyme complex. The data suggest that PS membranes (1) regulate factor X(a), (2) alter the substrate specificity of factor X(a) to favor the meizothrombin intermediate, and (3) "channel" intermediate (MzII(a) or Pre2-F1.2) back to the active site of factor X(a) for rapid conversion to thrombin.  相似文献   

20.
The solvent accessibility of thrombin in its substrate-free and substrate-bound forms has been compared by amide hydrogen/deuterium (H/(2)H) exchange. The optimized inhibitor peptide dPhe-Pro-Arg chloromethyl ketone (PPACK) was used to simulate the substrate-bound form of thrombin. These studies were motivated by the lack of observed changes in the active site of thrombin in the crystal structure of the thrombin-thrombomodulin complex. This result appeared to contradict amide exchange studies on the thrombin-thrombomodulin complex that suggested subtle changes occur in the active site loops upon thrombomodulin binding. Our results show that two active site loops, residues 214-222 and residues 126-132, undergo decreases in solvent accessibility due to steric contacts with PPACK substrate. However, we also observe two regions outside the active site undergoing solvent protection upon substrate binding. The first region corresponds to anion binding exosite 1, and the second is a beta-strand-containing loop which runs through the core of the molecule and contains Trp141 which makes critical contacts with anion binding exosite 1. These results indicate two pathways of allosteric change that connect the active site to the distal anion binding exosite 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号