首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We isolated highly-purified photochemically active photosystem (PS) II reaction center (RC) complexes from the cyanobacterium Synechocystis sp. PCC 6803 using a histidine-tag introduced to the 47 kDa chlorophyll protein, and characterized their spectroscopic properties. Purification was carried out in a one-step procedure after isolation of PS II core complex. The RC complexes consist of five polypeptides, the same as in spinach. The pigment contents per two molecules of pheophytin a were 5.8 +/- 0.3 chlorophyll (Chl) a and 1.8 +/- 0.1 beta-carotene; one cytochrome b(559) was found per 6.0 Chl a molecules. Overall absorption and fluorescence properties were very similar to those of spinach PS II RCs; our preparation retains the best properties so far isolated from cyanobacteria. However, a clear band-shift of pheophytin a and beta-carotene was observed. Reasons for these differences, and RC composition, are discussed on the basis of the three-dimensional structure of complexes.  相似文献   

2.
A three-dimensional model of the core proteins D1 and D2, including the cofactors, that form the Photosystem II reaction centre of pea (Pisum sativum), has been generated. This model was built with a rule-based computer modelling system using the information from the crystal structures of the photosynthetic reaction centres of Rhodopseudomonas viridis and Rhodobacter sphaeroides. An alignment of the primary sequences of twenty three D1, nine D2, eight bacterial L and eight bacterial M subunits predicts strong similarity between bacterial and higher plant reaction centres, especially in the transmembrane region where the cofactors responsible for electron transport are located. The sequence to be modelled was aligned to the bacterial structures using environment-dependent substitution tables to construct matrices, improving the alignment procedure. The ancestral relationship between the bacteria and higher plant sequences allowed both the L and M subunits to be used as structural templates as they were equally related to the higher plant polypeptides. The regions with the highest predicted structural homology were used as a framework for the construction of the structurally conserved regions. The structurally conserved region of the model shows strong similarity to the bacterial reaction centre in the transmembrane helices. The stromal and lumenal loops show greater sequence variation and are therefore predicted to be the structurally variable regions in the model. The key sidechain assignments and residues that may interact with cofactors are discussed.Abbreviations D Tyr161 in the D2 polypeptide - PS II Photosystem II - QA primary plastoquinone acceptor of Photosystem II - QB secondary plastoquinone acceptor of Photosystem II - Z Tyr161 in the D1 polypeptide  相似文献   

3.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   

4.
We have measured the rate constant for the formation of the oxidized chlorophyll a electron donor (P680+) and the reduced electron acceptor pheophytin a (Pheo a ) following excitation of isolated Photosystem II reaction centers (PS II RC) at 15 K. This PS II RC complex consists of D1, D2, and cytochrome b-559 proteins and was prepared by a procedure which stabilizes the protein complex. Transient absorption difference spectra were measured from 450–840 nm as a function of time with 500fs resolution following 610 nm laser excitation. The formation of P680+-Pheo a is indicated by the appearance of a band due to P680+ at 820 nm and corresponding absorbance changes at 490, 515 and 546 nm due to the formation of Pheo a . The appearance of the 490 nm and 820 nm bands is monoexponenital with =1.4±0.2 ps. Treatment of the PS II RC with sodium dithionite and methyl viologen followed by exposure to laser excitation results in accumulation of Pheo a . Laser excitation of these prereduced RCs at 15 K results in formation of a transient absorption spectrum assigned to 1*P680. We observe wavelength-dependent kinetics for the recovery of the transient bleach of the Qy absorption bands of the pigments in both untreated and pre-reduced PS II RCs at 15K. This result is attributed to an energy transfer process within the PS II RC at low temperature that is not connected with charge separation.Abbreviations PS I Photosystem I - PS II Photosystem II - RC reaction center - P680 primary electron donor in Photosystem II - Chl a chlorophyll a - Pheo a pheophytin a  相似文献   

5.
Silicomolybdate (SiMo) and its effects on thylakoids have been characterized to evaluate its use as a probe for Photosystem II (PS II). It can accept electrons at two places in the electron transport chain: one at PS II and the other at PS I. In the presence of 1 M 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) only the site at PS II is available. It is suggested that SiMo must disp;ace bicarbonate from its binding site to be able to function as an electron acceptor. This displacement is non-competitive. The binding of SiMo is inhibited differentially by PS II inhibitors: dinoseb>ioxynil> diuron. This difference is determined by the different positions of the inhibitors within the QB binding niche and their interaction with bicarbonate. The experimental results show that the SiMo-binding niche is located between the parallel helices of the D1 and D2 proteins of PS II, close to the non-heme iron. We conclude that SiMo is an electron acceptor with unique characteristics useful as a probe of the acceptor side of PS II.  相似文献   

6.
36Cl- was used to study the slow exchange of chloride at a binding site associated with Photosystem II (PS II). When PS II membranes were labeled with different concentrations of 36Cl-, saturation of binding at about I chloride/PS II was observed. The rate of binding showed a clear dependence on the concentration of chloride approaching a limiting value of about 3·10-4 s-1 at high concentrations, similar to the rate of release of chloride from labeled membranes. These rates were close to that found earlier for the release of chloride from PS II membranes isolated from spinach grown on 36Cl-, which suggests that we are observing the same site for chloride binding. The similarity between the limiting rate of binding and the rate of release of chloride suggests that the exchange of chloride with the surrounding medium is controlled by an intramolecular process. The binding of chloride showed a pH-dependence with an apparent pKa of 7.5 and was very sensitive to the presence of the extrinsic polypeptides at the PS II donor side. The binding of chloride was competitively inhibited by a few other anions, notably Br- and NO3 -. The slowly exchanging Cl- did not show any significant correlation with oxygen evolution rate or yield of EPR signals from the S2 state. Our studies indicate that removal of the slowly exchanging chloride lowers the stability of PS II as indicated by the loss of oxygen evolution activity and S2 state EPR signals.Abbreviations Chl chlorophyll - EPR electron paramagnetic resonance - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 4-morpholineethanesulfonic acid - MWCO molecular weight cut off - PPBQ phenyl-p-benzoquinone - PS II Photosystem II  相似文献   

7.
Light energy harvested by the pigments in Photosystem I (PSI) is used for charge separation in the reaction center (RC), after which the positive charge resides on a special chlorophyll dimer called P700. In studies on the PSI trapping kinetics, P700(+) is usually chemically reduced to re-open the RCs. So far, the information available about the reduction rate and possible chlorophyll fluorescence quenching effects of these reducing agents is limited. This information is indispensible to estimate the fraction of open RCs under known experimental conditions. Moreover, it would be important to understand if these reagents have a chlorophyll fluorescence quenching effects to avoid the introduction of exogenous singlet excitation quenching in the measurements. In this study, we investigated the effect of the commonly used reducing agent phenazine methosulfate (PMS) on the RC and fluorescence emission of higher plant PSI-LHCI. We measured the P700(+) reduction rate for different PMS concentrations, and show that we can give a reliable estimation on the fraction of closed RCs based on these rates. The data show that PMS is quenching chlorophyll fluorescence emission. Finally, we determined that the fluorescence quantum yield of PSI with closed RCs is 4% higher than if the RCs are open.  相似文献   

8.
Primary charge separation in Photosystem II   总被引:3,自引:3,他引:0  
In this Minireview, we discuss a number of issues on the primary photosynthetic reactions of the green plant Photosystem II. We discuss the origin of the 683 and 679 nm absorption bands of the PS II RC complex and suggest that these forms may reflect the single-site spectrum with dominant contributions from the zero-phonon line and a pronounced ∼80 cm−1 phonon side band, respectively. The couplings between the six central RC chlorins are probably very similar and, therefore, a `multimer' model arises in which there is no `special pair' and in which for each realization of the disorder the excitation may be dynamically localized on basically any combination of neighbouring chlorins. The key features of our model for the primary reactions in PS II include ultrafast (<500 fs) energy transfer processes within the multimer, `slow' (∼20 ps) energy transfer processes from peripheral RC chlorophylls to the RC multimer, ultrafast charge separation (<500 fs) with a low yield starting from the singlet-excited `accessory' chlorophyll of the active branch, cation transfer from this `accessory' chlorophyll to a `special pair' chlorophyll and/or charge separation starting from this `special pair' chlorophyll (∼8 ps), and slow relaxation (∼50 ps) of the radical pair by conformational changes of the protein. The charge separation in the PS II RC can probably not be described as a simple trap-limited or diffusion-limited process, while for the PS II core and larger complexes the transfer of the excitation energy to the PS II RC may be rate limiting. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Changes in composition of membrane proteins in Synechocystis PCC 6803 induced by the shift of light regime for photosynthetic growth were studied in relation to the regulation of PS I/PS II stoichiometry. Special attention was paid to the changes in abundance of proteins of PS I and PS II complexes. Composition was examined using a LDS-PAGE and a quantitative enzyme immunoassay. Abundance of PsaA/B polypeptides and the PsaC polypeptide of the PS I complex, on a per cell basis, increased under the light regime exciting preferentially PS II and decreased under the light regime exciting mainly PS I. Similar changes were observed with polypeptides of 18.5, 10 and 8.5 kDa. The abundance of other proteins associated with membranes, including PsbA polypeptide of the PS II complex, was fairly constant irrespective of light regime. These results are consistent with our previous observations with other strains of cyanophytes (Anabaena variabilis M2 and Synechocystis PCC 6714) that PS I is the variable component in changes in PS I/PS II stoichiometry in response to changing light regimes for photosynthesis.Abbreviations CBB Coomassie brilliant blue - Chl chlorophyll - EIA enzyme immunoassay - LDS lithium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - PS photosystem - PVDF polyvinylidene difluoride  相似文献   

10.
Purified chloroplasts were prepared from developing spinach leaves. The chloroplasts were separated into thylakoid and stroma fractions, and nucleic acids were prepared from them. Photosystem I reaction center polypeptide(s) (PS I RC) mRNA was associated with the thylakoid fraction when measured by hybridization using a probe for PS I RC polypeptide ps1A1, or when measured by translation assay. The ps1A1 polypeptide was coded for by a 5.5-kbp mRNA which others have shown also codes for PS IRC polypeptide ps1A2. This mRNA was in functional thylakoid-bound ribosomes because when thylakoids with bound ribosomes were translated in the absence of protein synthesis initiation, polypeptides that reacted with anti-PS I RC were formed. The results indicate that PS I RC polypeptides are synthesized exclusively by thylakoid-bound ribosomes.  相似文献   

11.
Evidence from statistical cluster analyses of a multiple sequence alignment of G protein-coupled receptor seven-helix folds supports the existence of structurally conserved transmembrane (TM) ligand binding sites in the opioid/opioid receptor-like (ORL1) and amine receptor families. Based on the expectation that functionally conserved regions in homologous proteins will display locally higher levels of sequence identity compared with global sequence similarities that pertain to the overall fold, this approach may have wider applications in functional genomics to annotate sequence data. Binding sites in models of the kappa-opioid receptor seven-helix bundle built from the rhodopsin templates of Baldwin et al. (1997) [J. Mol. Biol., 272, 144-164] and Herzyk and Hubbard (1998) [J. Mol. Biol., 281, 742-751] are compared. The Herzyk and Hubbard template is found to be in better accord with experimental studies of amine, opioid and rhodopsin receptors owing to the reduced physical separation of the extracellular parts of TM helices V and VI and differences in the rotational orientation of the N-terminal of helix V that reveal side chain accessibilities in the Baldwin et al. structure to be out of phase with relative alkylation rates of engineered cysteine residues in the TM binding site of the alpha(2A)-adrenergic receptor. TM helix V in the Baldwin et al. template has been remodelled with a different proline kink to satisfy experimental constraints. A recent proposal that rotation of helix V is associated with receptor activation is critically discussed.  相似文献   

12.
Selective extraction-reconstitution experiments with the extrinsic Photosystem II polypeptides (33 kDa, 23 kDa and 17 kDa) have demonstrated that the manganese complex and the 33 kDa polypeptide are both necessary structural elements for the tight binding of the water soluble 17 and 23 kDa species. When the manganese complex is intact the 33 kDa protein interacts strongly with the rest of the photosynthetic complex. Destruction of the Mn-complex has two dramatic effects: i) The binding of the 33 kDa polypeptide is weaker, since it can be removed by exposure of the PS II system to 2 M NaCl, and ii) the 17 and 23 kDa species do not rebind to Mn-depleted Photosystem II membranes that retain the 33 kDa protein.Abbreviations Chl chlorophyll - HQ hydroquinone - MES 2(N-morpholino)ethanesulfonic acid - PS II Photosystem II - Tris 2-amino-2-hydroxymethylpropane-1,3-diol  相似文献   

13.
Certain phenolic compounds represent a distinct class of Photosystem (PS) II Q(B) site inhibitors. In this paper, we report a detailed study of the effects of 2,4,6-trinitrophenol (TNP) and other phenolic inhibitors, bromoxynil and dinoseb, on PS II energetics. In intact PS II, phenolic inhibitors bound to only 90-95% of Q(B) sites even at saturating concentrations. The remaining PS II reaction centers (5-10%) showed modified Q(A) to Q(B) electron transfer but were sensitive to urea/triazine inhibitors. The binding of phenolic inhibitors was 30- to 300-fold slower than the urea/triazine class of Q(B) site inhibitors, DCMU and atrazine. In the sensitive centers, the S(2)Q(A)(-) state was 10-fold less stable in the presence of phenolic inhibitors than the urea/triazine herbicides. In addition, the binding affinity of phenolic herbicides was decreased 10-fold in the S(2)Q(A)(-) state than the S(1)Q(A) state. However, removal of the oxygen-evolving complex (OEC) and associated extrinsic polypeptides by hydroxylamine (HA) washing abolished the slow binding kinetics as well as the destabilizing effects on the charge-separated state. The S(2)-multiline electron paramagnetic resonance (EPR) signal and the 'split' EPR signal, originating from the S(2)Y(Z) state showed no significant changes upon binding of phenolic inhibitors at the Q(B) site. We thus propose a working model where Q(A) redox potential is lowered by short-range conformational changes induced by phenolic inhibitor binding at the Q(B) niche. Long-range effects of HA-washing eliminate this interaction, possibly by allowing more flexibility in the Q(B) site.  相似文献   

14.
Transient electron paramagnetic resonance (TR EPR) at 9.8 GHz has been used to study the light-induced triplet state in single crystals of Photosystem II (PS II). The crystals were grown from a solution of PS II core complexes from the thermophilic cyanobacterium Synechococcus elongatus. The core complexes contain at least 17 subunits, including the water-oxidizing complex, and 32 chlorophyll a molecules per PS II complex. The PS II complexes are active in light-induced electron transfer and water oxidation. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with four dimers of PS II complexes per unit cell. Laser excitation was used to generate the recombination triplet state in PS II which was then studied by EPR at low temperatures (10 K). The crystal spectra show the same magnitude of the zero-field splitting (ZFS) values D, E as spectra obtained earlier for the triplet state of PS II in frozen solution. The orientation of the ZFS tensor D of the triplet state with respect to the crystallographic axes has been deduced from the analysis of angular-dependent EPR spectra. Knowledge of the orientation of the D tensor component perpendicular to the plane of the chlorophyll (D(Z)) allows an assignment on which chlorophyll of the reaction centre the triplet state is localized at low temperatures. Furthermore, the orientation of the D(X) and D(Y) components of the D tensor yielded the in-plane orientation of the respective chlorophyll in the reaction centre providing first experimental evidence for the orientation of this molecule in the PS II.  相似文献   

15.
Investigations on photosynthesis have greatly benefited by the use of specific inhibitors that affect a specific site of inhibition on the electron-transport chain. We show here for the first time that cobalt (Co2+) ions can be used specifically to inactivate electron donation to the reaction centre of Photosystem (PS) II without affecting PS I reactions. This conclusion is based on the following observations: (1) addition of exogenous electron donors such as NH2OH does not relieve Co2+-induced inactivation of photoelectron transport or the lowering of steady-state chlorophyll a fluorescence yield; this suggests that the inhibition is beyond the NH2OH donation site and before the fluorescence quencher Q, i.e., on the reaction centre complex itself. (2) Washing of Co2+-pretreated chloroplasts with isolation buffer to remove Co2+ does not relieve Co2+-induced inhibition of Hill activity, suggesting that the Co2+ effect is irreversible. (3) Co2+ did not alter the PS I reactions. Thus, Co2+-treated chloroplasts can be used to study PS I functions free from PS II reactions in isolated chloroplasts.  相似文献   

16.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

17.
Cytochrome bd is a quinol oxidase of Escherichia coli under microaerophilic growth conditions. Coupling of the release of protons to the periplasm by quinol oxidation to the uptake of protons from the cytoplasm for dioxygen reduction generates a proton motive force. On the basis of sequence analysis, glutamates 99 and 107 conserved in transmembrane helix III of subunit I have been proposed to convey protons from the cytoplasm to heme d at the periplasmic side. To probe a putative proton channel present in subunit I of E. coli cytochrome bd, we substituted a total of 10 hydrophilic residues and two glycines conserved in helices I and III-V and examined effects of amino acid substitutions on the oxidase activity and bound hemes. We found that Ala or Leu mutants of Arg9 and Thr15 in helix I, Gly93 and Gly100 in helix III, and Ser190 and Thr194 in helix V exhibited the wild-type phenotypes, while Ala and Gln mutants of His126 in helix IV retained all hemes but partially lost the activity. In contrast, substitutions of Thr26 in helix I, Glu99 and Glu107 in helix III, Ser140 in helix IV, and Thr187 in helix V resulted in the concomitant loss of bound heme b558 (T187L) or b595-d (T26L, E99L/A/D, E107L/A/D, and S140A) and the activity. Glu99 and Glu107 mutants except E107L completely lost the heme b595-d center, as reported for heme b595 ligand (His19) mutants. On the basis of this study and previous studies, we propose arrangement of transmembrane helices in subunit I, which may explain possible roles of conserved hydrophilic residues within the membrane.  相似文献   

18.
Summary cDNAs encoding three different LHC I polypeptides (Type I, Type II and Type III) from the gymnosperm Scots pine (Pinus sylvestris L.) were isolated and sequenced. Comparisons of the deduced amino acid sequences with the corresponding tomato sequences showed that all three proteins were highly conserved although less so than the LHC II proteins. The similarities between mature Scots pine and tomato Types I, II and III LHC I proteins were 80%, 87% and 85%, respectively. Two of the five His residues that are found in AXXXH sequences, which have been identified as putative chlorophyll ligands in the Type I and Type II proteins, were not conserved. The same two regions of high homology between the different LHC proteins, which have been identified in tomato, were also found in the Scots pine proteins. Within the conserved regions, the Type I and Type II proteins had the highest similarity; however, the Type II and Type III proteins also showed a similarity in the central region. The results suggest that all flowering plants (gymnosperms and angiosperms) probably have the same set of LHC polypeptides. A new nomenclature for the genes encoding LHC polypeptides (formerly cab genes) is proposed. The names lha and lhb are suggested for genes encoding LHC I and LHC II proteins, respectively, analogous to the nomenclature for the genes encoding other photosynthetic proteins.  相似文献   

19.
Spin-trapping electron spin resonance (ESR) was used to monitor the formation of superoxide and hydroxyl radicals in D1/D2/cytochrome b-559 Photosystem II reaction center (PS II RC) Complex. When the PS II RC complex was strongly illuminated, superoxide was detected in the presence of ubiquinone. SOD activity was detected in the PS II RC complex. A primary product of superoxide, hydrogen peroxide, resulted in the production of the most destructive reactive oxygen species, *OH, in illuminated PS II RC complex. The contributions of ubiquinone, SOD and H(2)O(2) to the photobleaching of pigments and protein photodamage in the PS II RC complex were further studied. Ubiquinone protected the PS II RC complex from photodamage and, interestingly, extrinsic SOD promoted this damage. All these results suggest that PS II RC is an active site for the generation of superoxide and its derivatives, and this process protects organisms during strong illumination, probably by inhibiting more harmful ROS, such as singlet oxygen.  相似文献   

20.
Primary charge separation within Photosystem II (PS II) is much slower (time constant 21 ps) than the equivalent step in the related reaction center (RC) found in purple bacteria ( 3 ps). In the case of the bacterial RC, replacement of a specific tyrosine residue within the M subunit (at position 210 in Rhodobacter sphaeroides), by a leucine residue slows down charge separation to 20 ps. Significantly the analogous residue in PS II, within the D2 polypeptide, is a leucine not a tyrosine (at position D2-205, Chlamydomonas reinhardtii numbering). Consequently, it has been postulated [Hastings et al. (1992) Biochemistry 31: 7638–7647] that the rate of electron transfer could be increased in PS II by replacing this leucine residue with tyrosine. We have tested this hypothesis by constructing the D2-Leu205Tyr mutant in the green alga, Chlamydomonas reinhardtii, through transformation of the chloroplast genome. Primary charge separation was examined in isolated PS II RCs by time-resolved optical spectroscopy and was found to occur with a time constant of 40 ps. We conclude that mutation of D2-Leu205 to Tyr does not increase the rate of charge separation in PS II. The slower kinetics of primary charge separation in wild type PS II are probably not due to a specific difference in primary structure compared with the bacterial RC but rather a consequence of the P680 singlet excited state being a shallower trap for excitation energy within the reaction center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号