首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manufacturing has been evolving over the years as different needs and technologies arise. This paper describes an emerging manufacturing technology driven by information systems, the global network infrastructure, and new business models driven by the availability of real-time information. Information-based manufacturing concerns using the right information to know what products to make, when to make them, and then making them the best possible. This becomes more complicated when a number of products, facilities, markets, and companies are involved. More than just information is needed. Connectivity, ability to coordinate and integrate, and implementation strategy all are important. Information systems provide the infrastructure to carry out these objectives. Because of the need for an effective information infrastructure, the Internet has the potential to further enhance information-based manufacturing. Information-based manufacturing can be efficient only when the underlying supply-chain network is run efficiently, for the supply chain provides the infrastructure for directing all the activities from receiving raw materials to the delivery of final products. This paper illustrates how the Web technology can help coordinate the supply-chain activities in manufacturing. It also illustrates the relationships between product types, supply-chain structures, information-sharing, coordination, and the Web.  相似文献   

2.
The concept of tracing the ecologically-based life cycle impacts of agricultural and food industries (AFIs) has become a topic of interest worldwide due to their critical association with the climate change, water and land footprint, and food security. In this study, an in-depth analysis of ecological resource consumption, atmospheric emissions, land and water footprints of 54 agricultural and food industries in the U.S. were examined extensively. Initially, the supply-chain linked ecological life cycle assessment was performed with Ecologically-based Life Cycle Assessment (Eco-LCA) tool. Then, the results of life cycle inventory were used to assess the mid and end-point impacts by using the ReCiPe approach. Thirdly, ecological performance assessment was performed using well-known metrics, including loading and renewability ratios and eco-efficiency analysis. As a novel comprehensive approach, the integrated framework that consists of the Eco-LCA, ReCiPe and linear programming-based ecological performance assessment is of importance to have an overall understanding about the extent of impacts related to agricultural and food production activities across the U.S. Results indicated that grain farming, dairy food, and animal production-related sectors were found to have the greatest shares in both environmental and ecological impact categories as well as endpoint impacts on human health, ecosystem and resources. In terms of climate change, animal (except poultry) slaughtering, rendering, and processing (ASRP), cattle ranching and farming (CRF), fertilizer manufacturing (FM), grain farming (GF), fluid milk and butter manufacturing (FMBM) were found to be the top five dominant industries in climate change impacts accounting for about 60% share of the total impact.  相似文献   

3.
The great challenge for service-oriented manufacturing (SOM) is how to cope with customer behavior while making decision on production planning and scheduling. In this paper, we consider a single-stage manufacturing system for SOM with impatient customers. In order to represent customer balking behavior caused by backlog, we employ a balking function, which is an arbitrary non-decreasing function of the backlog for characterizing the customer’s response to the backlog. The objective is to find the optimal production policy that minimizes the system cost. The problem is formulated as a Markov decision process. The optimal production policy is proved to be a base-stock policy. The effects of system parameters on the optimal base-stock level are analytically investigated, and the impact of customer balking behavior on the system is illustrated by numerical example in which linear balking function is employed. Numerical example shows that customer balking has a significant impact on the optimal control and the performance measures of the system under the optimal policy.  相似文献   

4.

Purpose

The aim of the current study was to analyze the impacts of acrylic fiber manufacturing on the environment and to obtain information for assisting decision makers in improving relevant environmental protection measures for green field investments in developing countries especially in Africa and Middle East and North Africa (MENA) regions. The key research questions were as follows: what are the different impacts of acrylic fiber manufacturing on the environment and which base material has the highest impact?

Methods

The life cycle assessment (LCA) started from obtaining the raw material until the end of the production process (cradle to gate analysis). Focus was given on water consumption, energy utilization in acrylic fiber production, and generated waste from the industry. The input and output data for life cycle inventory was collected from an acrylic fiber manufacturing plant in Egypt. SimaPro software was used to calculate the inventory of twelve impact categories that were taken into consideration, including global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), carcinogen potential (CP), ecotoxicity potential (ETP), respiratory inorganic formation potential (RIFP), respiratory organic formation potential (ROFP), radiation potential (RP), ozone layer depletion (OLD), mineral depletion (MD), land use (LU), and fossil fuel depletion (FFD).

Results and discussion

LCA results of acrylic fiber manufacturing on the environment show that 82.0 % of the impact is on fossil fuel depletion due to the high-energy requirement for acrylonitrile production, 15.9 % of the impact is on human health, and 2.1 % on ecosystem quality. No impacts were detected on radiation potential, ozone layer depletion, land use, mineral depletion, or human respiratory system due to organic substances.

Conclusions

Based on these study results, it is concluded that acrylic fiber manufacturing is a high-energy consumption industry with the highest impact to be found on fossil fuel depletion and human health. This study is based on modeling the environmental effects of the production of 1-kg acrylic fiber and can serve to estimate impacts of similar manufacturing facilities and accordingly use these results as an indicator for better decision-making.
  相似文献   

5.
Aim, Scope and Background  The data-intensive nature of life cycle assessment (LCA), even for non-complex products, quickly leads to the utilization of various methods of representing the data in forms other than written characters. Up until now, traditional representations of life cycle inventory (LCI) data and environmental impact analysis (EIA) results have usually been based on 2D and 3D variants of simple tables, bar charts, pie charts and x/y graphs. However, these representation methods do not sufficiently address aspects such as representation of life cycle inventory information at a glance, filtering out data while summarizing the filtered data (so as to reduce the information load), and representation of data errors and uncertainty. Main Features  This new information representation approach with its glyph-based visualization method addresses the specific problems outlined above, encountered when analyzing LCA and EIA related information. In particular, support for multi-dimensional information representation, reduction of information load, and explicit data feature propagation are provided on an interactive, computer-aided basis. Results  Three-dimensional, interactive geometric objects, so called OM-glyphs, were used in the visualization method introduced, to represent LCA-related information in a multi-dimensional information space. This representation is defined by control parameters, which in turn represent spatial, geometric and retinal properties of glyphs and glyph formations. All relevant analysis scenarios allowed and valid can be visualized. These consist of combinations of items for the material and energy inventories, environmental items, life cycle phases and products, or their parts and components. Individual visualization scenarios, once computed and rendered on a computer screen, can then interactively be modified in terms of visual viewpoint, size, spatial location and detail of data represented, as needed. This helps to increase speed, efficiency and quality of the assessment performance, while at the same time considerably reducing mental load due to the more structured manner in which information is represented to the human expert. Conclusions  The previous paper in this series discussed the motivation for a new approach to efficient information visualization in LCA and introduced the essential basic principles. This second paper offers more insight into and discussion on technical details and the framework developed. To provide a means for better understanding the visualization method presented, examples have been given. The main purpose of the examples, as already indicated, is to demonstrate and make transparent the mapping of LCA related data and their contexts to glyph parameters. Those glyph parameters, in turn, are used to generate a novel form of sophisticated information representation which is transparent, clear and compact, features which cannot be achieved with any traditional representation scheme. Outlook  Final technical details of this approach and its framework will be presented and discussed in the next paper. Theoretical and practical issues related to the application of this visualization method to the computed life cycle inventory data of an actual industrial product will also be discussed in this next paper.  相似文献   

6.
《Genomics》2020,112(6):4370-4384
In the past decades, the rapid growth of computer and database technologies has led to the rapid growth of large-scale medical datasets. On the other, medical applications with high dimensional datasets that require high speed and accuracy are rapidly increasing. One of the dimensionality reduction approaches is feature selection that can increase the accuracy of the disease diagnosis and reduce its computational complexity. In this paper, a novel PSO-based multi objective feature selection method is proposed. The proposed method consists of three main phases. In the first phase, the original features are showed as a graph representation model. In the next phase, feature centralities for all nodes in the graph are calculated, and finally, in the third phase, an improved PSO-based search process is utilized to final feature selection. The results on five medical datasets indicate that the proposed method improves previous related methods in terms of efficiency and effectiveness.  相似文献   

7.
Purpose

Galvanized sheet is the most widely used coated steel plate globally in the industry of construction, automobile, electronics manufacturing, etc. Large amounts of resources and energy are used in galvanized sheet production, which likewise generates vast amounts of pollutant emissions. In the face of the rapid growth of the production and demand of galvanized sheet in China, it is very important to find out the key factors of the environment impact in the production of galvanized sheet. An evaluation of the environmental impact of galvanized sheet production in China was conducted by using the framework of life cycle assessment to improve resource saving and environmental protection in the galvanized sheet industry, and update the life cycle inventory database of galvanized sheet production.

Methods

The environmental impact assessment was carried out based on the life cycle assessment framework by the use of ReCiPe 2016 method which was applicable on a global scale to evaluate the environmental impact of galvanized sheet production. Methods of uncertainty analysis and sensitivity analysis were adopted to provide credible support.

Results and discussion

The midpoint categories of global warming and fossil resource scarcity, as well as the endpoint categories of human health contributed most to environmental burden, which were mainly caused by carbon dioxide emissions and coal consumption. Environmental impact was dominated by the key process of continuous casting billet production, followed by electrolytic zinc production and electricity generation.

Conclusions

Additional CO2-reducing measures should be implemented in galvanized sheet production to slow the effect of global warming. Moreover, biomass char reducing agents, rather than coal-based reducing agents, should be utilized in steelmaking to reduce fossil resource consumption. Furthermore, renewable energy, rather than coal-based electricity, should be used in galvanized sheet production to reduce carbon emissions and fossil resource consumption. Increasing the recycling rate of scrap steel and zinc waste can save resources and reduce environmental burden. The results of this study can provide guidance in the reduction of resource consumption and environmental burden of galvanized sheet production to the maximum extent.

  相似文献   

8.
Recent advances in next-generation sequencing technologies have resulted in an exponential increase in the rate at which protein sequence data are being acquired. The k-gram feature representation, commonly used for protein sequence classification, usually results in prohibitively high dimensional input spaces, for large values of k. Applying data mining algorithms to these input spaces may be intractable due to the large number of dimensions. Hence, using dimensionality reduction techniques can be crucial for the performance and the complexity of the learning algorithms. In this paper, we study the applicability of feature hashing to protein sequence classification, where the original high-dimensional space is "reduced" by hashing the features into a low-dimensional space, using a hash function, i.e., by mapping features into hash keys, where multiple features can be mapped (at random) to the same hash key, and "aggregating" their counts. We compare feature hashing with the "bag of k-grams" approach. Our results show that feature hashing is an effective approach to reducing dimensionality on protein sequence classification tasks.  相似文献   

9.
The amazing revolution in computer hardware performance and cost reduction has yet to be carried over to computer software. In fact, application software today is often more expensive and less reliable than the hardware. New enhancements in software development techniques, such as object oriented programming and interactive graphics based user interface design, finally may be having a significant impact on the time-to-market and reliability of these application programs. We discuss our experiences using one such set of software development tools available on the NeXT workstation and describe the effort required to port our MidasPlus molecular modeling package to the NeXT workstation.  相似文献   

10.
Purpose

The purpose of this study is to provide an integrated method to identify the resource consumption, environmental emission, and economic cost for mechanical product manufacturing from economic and ecological dimensions and ultimately to provide theoretical and data support of energy conservation and emission reduction for mechanical product manufacturing.

Methods

The applied research methods include environmental life cycle assessment (LCA) and life cycle cost (LCC). In life cycle environmental assessment, the inventory data are referred from Chinese Life Cycle Database and midpoint approach and EDIP2003 and CML2001 models of life cycle impact assessment (LCIA) are selected. In life cycle cost assessment, three cost categories are considered. The proposed environment and cost assessment method is based on the theory of social willingness to pay for potential environmental impacts. With the WD615 Steyr engine as a case, life cycle environment and cost are analyzed and evaluated.

Results and discussion

The case study indicates that, in different life cycle phases, the trend of cost result is generally similar to the environmental impacts; the largest proportion of cost and environmental impact happened in the two phases of “material production” and “component manufacturing” and the smallest proportion in “material transport” and “product assembly.” The environmental impact category of Chinese resource depletion potential (CRDP) accounted for the largest proportion, followed by global warming potential (GWP) and photochemical ozone creation potential (POCP), whereas the impacts of eutrophication potential (EP) and acidification potential (AP) are the smallest. The life cycle “conventional cost” accounted for almost all the highest percentage in each phase (except “material transport” phase), which is more than 80% of the total cost. The “environmental cost” and “possible cost” in each phase are relatively close, and the proportion of which is far below the “conventional cost.”

Conclusions

The proposed method enhanced the conventional LCA. The case results indicate that, in a life cycle framework, the environment and cost analysis results could support each other, and focusing on the environment and cost analysis for mechanical product manufacturing will contribute to a more comprehensive eco-efficiency assessment. Further research on the life cycle can be extended to phases of “early design,” “product use,” and “final disposal.” Other LCIA models and endpoint indicators are advocated for this environmental assessment. Environmental cost can also be further investigated, and the relevant social willingness to pay for more environmental emissions is advocated to be increased.

  相似文献   

11.
Manufacturing enterprises face intensive competitive pressures, and many firms are forced to redesign processes just to stay even with the competition. But process redesign is an expensive, time-consuming, and labor-intensive activity, and first-generation computer-based tools are inadequate for redesign today. Alternatively, knowledge-based systems and intelligent tools have the ability to address the key intellectual activities required for effective process redesign. The research described in this article addresses an intelligent redesign tool called KOPeR. The article describes the KOPeR design and implementation and highlights its use and mechanics in the context of a manufacturing supply-chain example. It then turns to application of KOPeR as a redesign tool in the field, through an “industrial-strength” reengineering engagement, to redesign major supply-chain processes. The field results reveal insights into the use, utility, and potential of this tool in procurement, manufacturing, and beyond. The article closes with a number of promising future directions for related research.  相似文献   

12.
The evolution of manufacturing systems, according to changing internal and external conditions, requires design and assessment techniques that consider both strategic and financial criteria to evaluate the suitability of the Flexible and Reconfigurable system solutions in addressing these variations. In this paper, a fuzzy multi-objective mixed integer optimization model to evaluate RMS investments used in a multiple product demand environment is presented. The model incorporates in-house production and outsourcing options, machine acquisition and disposal costs, operational costs, and re-configuration cost and duration for the utilized modular machines. The resulting system configurations are optimized for lifecycle costs, responsiveness performance, and system structural complexity simultaneously. A complexity metric that incorporates the quantity of information using an entropy approach is used to represent the inherent structural complexity of the considered system configurations. It accounts for the complexity of the machine modules in a manufacturing system through the use of an index derived from a newly developed manufacturing systems classification code, which captures the effect machine types and technologies on the system’s structural complexity. A metric is proposed to measure the responsiveness ability and efficiency as well as the overall capability of each machine and effectiveness of machines changeover. The application of the developed planning and assessment model that incorporates these three criteria is illustrated with a case study where FMS and RMS alternatives were compared. The suitable conditions for investing in RMS are also discussed.  相似文献   

13.
A preclinical cost analysis method was introduced to assess the cost effectiveness of using a custom implant instead of standard “off-the-shelf” implants for revision total hip arthroplasty. Finite element models of proximal femur–implant systems were constructed and an array of environmental factors, including loads and bone properties, was incorporated into a computer experiment to evaluate relative motion between implant and bone. Implant performance related cost was then determined from relative motion measures using a quality loss function. Unit manufacturing cost was added to implant performance cost to determine the cost difference between the two implants. The reduction in relative motion achieved by the custom implant with respect to an equivalent-lengthed standard implant justified its additional unit manufacturing costs. In response to these results and suggestions by surgeons, we increased the length of the standard implant by 50 mm and performed an identical series of analyses. We found that increasing the stem length to 120 mm substantially decreased the relative motion of the standard implant to values less than for the custom implant. This case study provides preliminary evidence that a surgical inventory consisting of longer-stemmed standard implants or modular distal stems is more cost effective than designing custom devices on a case-by-case basis. Additional design studies are warranted before generalizing such a claim.  相似文献   

14.
Aim, Scope, and Background Industrial and institutional (I and I) floor maintenance activities require regular use of chemical products and equipment. Different floor care systems require different maintenance products, activities, and frequencies which consume different levels of energy and material for product manufacturing, maintenance, and application. Therefore, selecting between floor maintenance products and programs requires comprehensive analysis of the entire floor maintenance system as well as any site-specific factors that can influence human and environmental health. In this paper, a probabilistic model for comparing the environmental life cycle implications of I and I floor maintenance programs is presented. The primary interest is in comparing programs that use different water-based acrylic floor finishes and in particular, programs using zinc-containing floor finishes compared to zinc-free floor finish systems. Zinc, used in some acrylic polymers as a polymer cross-linking agent, is regulated in some communities to minimize its impact on the aquatic environment. Method The life cycle assessment (LCA) model was developed in compliance with the ISO 14040 series of standards [1]. Furthermore, uncertain input variables were defined as probabilistic distributions and Latin Hypercube Sampling was used to propagate uncertainty through the model. The scope of the study includes the full life cycle of the materials, supplies, equipment, and activities associated with performing floor maintenance. The effects of maintaining higher lighting and temperature levels while performing floor maintenance are estimated using building energy system analysis. The life cycle inventory (LCI) element of the LCA was developed using product-specific data, publicly available data, and established life cycle inventory databases. Life cycle impact assessment was conducted using the Eco-Indicator 99 [2] and Impact 2002+ [3,4] impact assessment methods. Results Two floor maintenance scenarios were developed and analyzed to compare the environmental impact of programs using zinc-containing and zinc-free floor finishes. The results discussed herein are presented for a hypothetical retail store located in the Midwest region of the United States. Given the scenarios examined, zinc-free floor finish systems reduced the release of zinc ions to the environment, but the overall impact in all life cycle impact assessment (LCIA) categories was greater for the zincfree floor finish system primarily due to the increased frequency of maintenance. Discussion The impacts associated with operating the facility were orders of magnitude higher than those associated with producing or using floor care products, supplies, or equipment. This leads to the conclusion that for critical impacts, floor care product development should focus research efforts on innovative products that reduce application and maintenance time if significant reduction in these impacts is sought. Conclusions Adopting a stochastic modeling approach enabled incorporation of parameter uncertainty and analysis of uncertainty in model results. In the scenario shown here, the magnitude of overall impact in all LCIA categories was greater for the zinc-free floor finish system than the zinc-containing floor finish system. Perspectives Use of decision modeling software provided flexibility for developing scenarios and assessing floor maintenance programs under various operational and site-specific conditions.  相似文献   

15.
X Lu  Y Li 《Bio Systems》2001,61(2-3):83-94
A general evolutionary trend is the generation of organisms of increasing complexity, notwithstanding that reduction and simplification phenomena do occur in the evolutionary process. This paper proposes an evolutionary model incorporating the mechanisms of gene amplification and deletion. The evolutionary process leading to genomic complexity and the coexistence of simpler organisms with complicated ones were both simulated using the proposed model. The model was also used to investigate the influence of various factors on the evolution of complexity. The simulations indicated that the evolution of complexity is largely influenced by adaptation to complicated environments. Nevertheless, complex organisms require relatively more resources for survival and replication, which limits the on going tendency towards complexity. Moreover, the analysis showed that if the environment varies rapidly and the profit obtained from complexity is greater than the resources consumed, selection will tend to favor complexity. However, high living cost will tend to limit the trend of complexity and if the environment is relatively stable, reduction and simplification will become the dominant trends.  相似文献   

16.
The complexity and diversity of manufacturing software and the need to adapt this software to the frequent changes in the production requirements necessitate the use of a systematic approach to developing this software. The software life-cycle model (Royce, 1970) that consists of specifying the requirements of a software system, designing, implementing, testing, and evolving this software can be followed when developing large portions of manufacturing software. However, the presence of hardware devices in these systems and the high costs of acquiring and operating hardware devices further complicate the manufacturing software development process and require that the functionality of this software be extended to incorporate simulation and prototyping. This paper reviews recent methods for planning, scheduling, simulating, and monitoring the operation of manufacturing systems. A synopsis of the approaches to designing and implementing the real-time control software of these systems is presented. It is concluded that current methodologies support, in a very restricted sense, these planning, scheduling, and monitoring activities, and that enhanced performance can be achieved via an integrated approach.  相似文献   

17.
Growing commercial pressures in the pharmaceutical industry are establishing a need for robust computer simulations of whole bioprocesses to allow rapid prediction of the effects of changes made to manufacturing operations. This paper presents an integrated process simulation that models the cGMP manufacture of the FDA-approved biotherapeutic CroFab, an IgG fragment used to treat rattlesnake envenomation (Protherics U.K. Limited, Blaenwaun, Ffostrasol, Llandysul, Wales, U.K.). Initially, the product is isolated from ovine serum by precipitation and centrifugation, before enzymatic digestion of the IgG to produce FAB and FC fragments. These are purified by ion exchange and affinity chromatography to remove the FC and non-specific FAB fragments from the final venom-specific FAB product. The model was constructed in a discrete event simulation environment and used to determine the potential impact of a series of changes to the process, such as increasing the step efficiencies or volumes of chromatographic matrices, upon product yields and process times. The study indicated that the overall FAB yield was particularly sensitive to changes in the digestive and affinity chromatographic step efficiencies, which have a predicted 30% greater impact on process FAB yield than do the precipitation or centrifugation stages. The study showed that increasing the volume of affinity matrix has a negligible impact upon total process time. Although results such as these would require experimental verification within the physical constraints of the process and the facility, the model predictions are still useful in allowing rapid "what-if" scenario analysis of the likely impacts of process changes within such an integrated production process.  相似文献   

18.
Biologics manufacturing is capital and consumable intensive with need for advanced inventory planning to account for supply chain constraints. Early-stage process design and technology transfer are often challenging due to limited information on process variability regarding bioreactor titer, process yield, and product quality. Monte Carlo (MC) methods offer a stochastic modeling approach for process optimization where probabilities of occurrence for process inputs are incorporated into a deterministic model to simulate more likely scenarios for process outputs. In this study, we explore MC simulation-based design of a monoclonal antibody downstream manufacturing process. We demonstrate that this probabilistic approach offers more representative outcomes over the conventional worst-case approach where the theoretical minimum and maximum values of each process parameter are used without consideration for their probability of occurrence. Our work demonstrates case studies on more practically sizing unit operations to improve consumable utilization, thereby reducing manufacturing costs. We also used MC simulations to minimize process cadence by constraining the number of cycles per unit operation to fit facility preferences. By factoring in process uncertainty, we have implemented MC simulation-based facility fit analyses to efficiently plan for inventory when accounting for process constraints during technology transfer from lab-scale to clinical or commercial manufacturing.  相似文献   

19.
In recent years, numerous studies have demonstrated convincingly that impressive benefits can be obtained by the adoption of flexible manufacturing systems (FMSs). To obtain the benefits of an FMS requires the development of a completely integrated system. However, FMS implementations are frequently done incrementally through the introduction of subsystems such as flexible machining centers into an existing conventional system. The purpose of this research is to investigate some of the operational issues associated with the introduction of a CNC (computer numerically controlled) machine tool into a conventional system. The primary objective of the present study is to explore the relative effects on inventory holding cost of installing a single CNC at different locations within three different system configurations. Additionally, the study examines the sensitivity of these impacts to changes in (1) System utilization; (2) the ratios of setup times to run times in the conventional work centers; and (3) the rates of increase in holding costs for parts as they move through the system. Results indicated that, in general, introduction of a CNC into an otherwise conventional system reduces inventory holding cost for the system as a whole. However, the degree of this reduction varies depending on the position of the CNC in the system. In some cases the reduction in inventory holding cost is substantial, while in other cases it is relatively small.  相似文献   

20.
Modern manufacturing systems are increasingly required to be flexible and adaptable to changing market demands, which adds to their structural and operational complexity. One of the major challenges at the early design stages is to select a manufacturing system configuration that both satisfies the production functional requirements and is easy to operate and manage. A new metric for assessing the structural complexity of manufacturing system configurations is presented in this paper. The proposed complexity metric incorporates the quantity of information using an entropy approach. It accounts for the complexity inherent in the various modules in the manufacturing system through the use of an index derived from a newly developed manufacturing systems classification code. The code captures the effect of various component types and technologies used in a manufacturing system on the system’s structural complexity. The presented metric would be helpful in selecting the least complex manufacturing system configuration that meets the requirements. An engine cylinder head production system is used to illustrate the application of the proposed methodology in comparing feasible but different manufacturing system configurations capable of producing the cylinder head based on their structurally inherent complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号