首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The organophosphate degrading (opd) gene cluster of plasmid pPDL2 of Flavobacterium sp. ATCC27551 contains a novel open-reading frame, orf243. This was predicted to encode an alpha/beta hydrolase distantly related to the meta-fission product (MFP) hydrolases such as XylF, PhnD, and CumD. By homology modeling Orf243 has most of the structural features of MFP hydrolases including the characteristic active site catalytic triad. The purified protein (designated MfhA) is a homotetramer and shows similar affinity for 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD), 2-hydroxymuconic semialdehyde (HMSA), and 2-hydroxy-5-methylmuconic semialdehyde (HMMSA), the meta-fission products of 3-methyl catechol, catechol, and 4-methyl catechol. The unique catalytic properties of MfhA and the presence near its structural gene of cis-elements required for transposition suggest that mfhA has evolved towards encoding a common hydrolase that can act on meta-fission products containing either aldehyde or ketone groups.  相似文献   

2.
The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S. fuliginis was transformed with this plasmid. The transformant produced larger amount of active OPH with His-tag than E. coli.  相似文献   

3.
The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.  相似文献   

4.
The opd (organophosphate-degrading) gene derived from a 43-kilobase-pair plasmid (pSM55) of a Flavobacterium sp. (ATCC 27551) has a sequence identical to that of the plasmid-borne gene of Pseudomonas diminuta. Hybridization studies with DNA fragments obtained by restriction endonuclease digestion of plasmid DNAs demonstrated that the identical opd sequences were encoded on dissimilar plasmids from the two sources.  相似文献   

5.
A significantly improved, recombinant Escherichia coli has been developed to degrade the toxic organophosphorus compound, Paraoxon, to non-toxic materials by co-expression of organophosphorus hydrolase (OPH) under trc promoter and Vitreoscilla hemoglobin (VHb) under O2dependent nar promoter. VHb-expressing whole cells had significant enhancement of OPH activity (48%, 18.7 vs. 27.8 unit l–1) and bioconversion efficiency V max/K m (44%, 0.14 vs. 0.2 min–1) compared to VHb-free system.  相似文献   

6.
The hydrolase (Thermobifida fusca hydrolase; TfH) from T. fusca was produced in Escherichia coli as fusion protein using the OmpA leader sequence and a His6 tag. Productivity could be raised more than 100-fold. Both batch and fed-batch cultivations yield comparable cell specific productivities whereas volumetric productivities differ largely. In the fed-batch cultivations final rTfH concentrations of 0.5 g L−1 could be achieved. In batch cultivations the generated rTfH is translocated to the periplasm wherefrom it is completely released into the extracellular medium. In fed-batch runs most of the produced rTfH remains as soluble protein in the cytoplasm and only a fraction of about 35% is translocated to the periplasm. Migration of periplasmic proteins in the medium is obviously coupled with growth rate and this final transport step possibly plays an important role in product localization and efficacy of the Sec translocation process.  相似文献   

7.
It was previously shown that organophosphorus hydrolase (OPH) expression and purification could be tracked by fluorescence of green fluorescent protein (GFP) when synthesized as an N-terminal fusion with GFP (Cha et al., 2000; Wu et al., 2000). In order to enhance OPH productivity while utilizing the advantage of the reporter protein (GFP), two copies of OPH were cloned in tandem following the gfp(uv) gene (e.g., GFP-OPH(n=2)). Both anti-GFP and anti-OPH Western blots demonstrated that a higher yield was achieved in comparison to the one copy fusion (GFP-OPH). Importantly, the fusion protein was still fluorescent as determined via microscopy. In contrast, a fusion containing two copies of OPH without GFP, and an operon fusion of two OPHs with two independent ribosomal binding sites, did not result in a higher yield than one OPH expressed alone.  相似文献   

8.
Although Escherichia coli can be genetically engineered to degrade environmental toxic organophosphate compounds (OPs) to nontoxic materials, a critical problem in such whole cell systems is limited substrate diffusion. The present work examined whether periplasmic expression of organophosphorus hydrolase (OPH) resulted in better whole cell enzymatic activity compared to standard cytosolic expression. Recombinant OPH periplasmic expression was achieved using the general secretory (sec) pathway with the pelB signal sequence. We found that while total OPH activity in periplasmic-expressing cell lysates was lower compared to that in cytosolic-expressing cell lysates whole cell OPH activity was 1.8-fold greater at 12 h post-induction in the periplasmic-expressing cells as a result of OPH translocation into the periplasmic space ( approximately 67% of whole cell OPH activity was found in the periplasmic fraction). These data suggest that E. coli engineered to periplasmically secrete OPH via the sec pathway may provide an improved whole cell biodegradation system for destruction of environmental toxic OPs.  相似文献   

9.
J Y Lee  L Xun 《Journal of bacteriology》1997,179(5):1521-1524
The biochemistry of pentachlorophenol (PCP) degradation by Flavobacterium sp. strain ATCC 39723 has been studied, and two enzymes responsible for the conversion of PCP to 2,6-dichloro-p-hydroquinone (2,6-DiCH) have previously been purified and characterized. In this study, enzymatic activities consuming 2,6-DiCH were identified from the cell extracts of strain ATCC 39723. The enzyme was purified to apparent homogeneity by a purification scheme consisting of seven steps. Gel filtration chromatography showed a native molecular weight of about 40,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein of 42,500 Da. The purified enzyme converted 2,6-DiCH to 6-chlorohydroxyquinol (6-chloro-1,2,4-trihydroxybenzene), which was easily oxidized by molecular oxygen and hard to detect. The end product, 6-chlorohydroxyquinol, was detected only in the presence of a reductase and NADH in the reaction mixture. The enzyme dechlorinated 2,6-DiCH but not 2,5-DiCH. The enzyme required Fe2+ for activity and was severely inhibited by metal chelating agents. The optimal conditions for activity were pH 7.0 and 40 degrees C. The Kcat for 2,6-DiCH was 35 microM, and the kcat was 0.011 s-1.  相似文献   

10.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

11.
Periplasmic secretion has been used in attempts to construct an efficient whole‐cell biocatalyst with greatly reduced diffusion limitations. Previously, we developed recombinant Escherichia coli that express organophosphorus hydrolase (OPH) in the periplasmic space using the twin‐arginine translocation (Tat) pathway to degrade environmental toxic organophosphate compounds. This system has the advantage of secreting protein into the periplasm after folding in the cytoplasm. However, when OPH was expressed with a Tat signal sequence in E. coli, we found that the predominant OPH was an insoluble premature form in the cytoplasm, and thus, the whole‐cell OPH activity was significantly lower than its cell lysate activity. In this work, we, for the first time, used a molecular chaperone coexpression strategy to enhance whole‐cell OPH activity by improving the periplasmic translocation of soluble OPH. We found that the effect of GroEL‐GroES (GroEL/ES) assistance on the periplasmic localization of OPH was secretory pathway dependent. We observed a significant increase in the amount of soluble mature OPH when cytoplasmic GroEL/ES was expressed; this increase in the amount of mature OPH might be due to enhanced OPH folding in the cytoplasm. Importantly, the whole‐cell OPH activity of the chaperone–coexpressing cells was ~5.5‐fold greater at 12 h after induction than that of cells that did not express the chaperone as a result of significant Tat‐based periplasmic translocation of OPH in the chaperone–coexpressing cells. Collectively, these data suggest that molecular chaperones significantly enhance the whole‐cell activity of periplasmic OPH‐secreting cells, yielding an effective whole‐cell biocatalyst system with highly reduced diffusion limitations. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 925–930, 2012  相似文献   

12.
An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalysts on nonwoven polypropylene fabric and their applications in detoxifying contaminated wastewaters. The best cell loading (256 mg cell dry weight/g of support or 50 mg cell dry weight/cm2 of support) and subsequent hydrolysis of organophosphate nerve agents were achieved by immobilizing nongrowing cells in a pH 8, 150 mM citrate-phosphate buffer supplemented with 1 mM Co2+ for 48 h via simple adsorption, followed by organophosphate hydrolysis in a pH 8, 50 mM citrate-phosphate buffer supplemented with 0.05 mM Co2+ and 20% methanol at 37 degrees C. In batch operations, the immobilized cells degraded 100% of 0.8 mM paraoxon, a model organophosphate nerve agent, in approximately 100 min, at a specific rate of 0.160 mM min-1 (g cell dry wt)-1. The immobilized cells retained almost 100% activity during the initial six repeated cycles and close to 90% activity even after 12 repeated cycles, extending over a period of 19 days without any nutrient supplementation. In addition to paraoxon, other commonly used organophosphates, such as diazinon, coumaphos, and methylparathion were hydrolyzed efficiently. The cell immobilization technology developed here paves the way for an efficient, simple, and cost-effective method for detoxification of organophosphate nerve agents.  相似文献   

13.
Restriction maps of two plasmids encoding parathion hydrolase have been determined. pPDL2 is a 39-kb plasmid harbored by Flavobacterium sp. (ATCC 27551), while pCMS1 is a 70-kb plasmid found in Pseudomonas diminuta (strain MG). Both plasmids previously have been shown to share homologous parathion hydrolase genes (termed opd for organophosphate degradation) as judged by DNA-DNA hybridization and restriction mapping. In the present study, we conducted DNA hybridization experiments using each of nine PstI restriction fragments from pCMS1 as probes against Flavobacterium plasmid DNA. The opd genes of both plasmids are located within a highly conserved region of approximately 5.1 kb. This region of homology extends approximately 2.6 kb upstream and 1.7 kb downstream from the opd genes. No homology between the two plasmids is evident outside of this region.  相似文献   

14.
Rat liver protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds. We have developed an efficient method for its overproduction in Escherichia coli. Using a T7 RNA polymerase expression system, isolated yields of 15-30 mg/liter of recombinant rat PDI are readily obtained. Convenient purification of the enzyme from E. coli lysates involves ion-exchange (DEAE) chromatography combined with zinc chelate chromatography. The recombinant PDI shows catalytic activity identical to that of PDI isolated from bovine liver in both the reduction of insulin and the oxidative folding of ribonuclease A. The enzyme is expressed in E. coli as a soluble, cytoplasmic protein. After complete reduction and denaturation in 6 M guanidinium hydrochloride, PDI regains complete activity within 3 min after removal of the denaturant, implying that disulfide bonds are not essential for the maintenance of PDI tertiary structure. Both the protein isolated from E. coli and the protein isolated from liver contained free cysteine residues (1.8 +/- 0.2 and 1.4 +/- 0.3 SH/monomer, respectively).  相似文献   

15.
A recombinant expression vector, pCT7-CHISP6H, was constructed for the secretory expression of mature peptide of chitosanase (mMschito) from Microbacterium sp. OU01. The vector contains several elements, including T7 promoter, signal peptide sequence of mschito, 6 × His-tag sequence and PmaCI restriction enzyme cloning site. In pCT7-CHISP6H, mMschito was fused into signal peptide sequence of mschito gene to construct recombinant plasmid pCT7-CHISP6H-mMschito. The recombinant plasmid was transformed into Escherichia coli BL21(DE3) and then expressed. The recombinant protein was secreted into the Luria–Bertani broth and the chitosanase activity in supernatant of the culture could reach up to 67.56 U/mL. The rmMschito in the broth supernatant was purified using HisTrap™ FF Crude column and the purified rmMschito was shown to be apparent homogeneity by 12 % SDS–PAGE analysis. Detected by 4700 MALDI-TOF–TOF-MS, the molecular weight of the purified rmMschito was 26,758.1875 and it was consistent with the predicted molecular weight. Chitosan (degree of deacetylation of 99 %) was mostly hydrolyzed into chitopentaose, chitotriose, and chitobiose by the purified rmMschito.  相似文献   

16.
L Xun  C S Orser 《Journal of bacteriology》1991,173(14):4447-4453
A pentachlorophenol (PCP) hydroxylase which catalyzed the conversion of PCP to 2,3,5,6-tetrachlorohydroquinone and released iodide from triiodophenol in the presence of NADPH and oxygen was identified. The enzyme was purified by protamine sulfate precipitation, ammonium sulfate precipitation, hydrophobic chromatography, anion-exchange chromatography, gel filtration chromatography, and crystallization. The enzyme was a monomer with a molecular weight of 63,000. Under certain conditions, dimer and multimer conformations were also observed. The pI of the enzyme was pH 4.3. The optimal conditions for activity were a pH of 7.5 to 8.5 and a temperature of 40 degrees C. Each enzyme molecule contained one flavin adenine dinucleotide molecule. The Km for PCP was 30 microM and the Vmax was 16 mumol/min/mg of protein. The enzymatic reaction required 2 mol of NADPH per mol of halogenated substrate. On the basis of the data we present, it is likely that PCP hydroxylase is a flavoprotein monooxygenase. The addition of flavins to the reaction mixture did not stimulate the enzymatic reaction; however, we identified the photodegradation of triiodophenol and tribromophenol, but not PCP, by flavin mononucleotide or riboflavin and light.  相似文献   

17.
Expression of recombinant human nerve growth factor in Escherichia coli.   总被引:3,自引:0,他引:3  
Nerve growth factor (NGF) is a neurotrophic factor for basal forebrain cholinergic neurons and may be of benefit in neurodegenerative diseases of humans. A method is described to obtain significant amounts of biologically active recombinant human NGF (rhNGF) in one step. RhNGF was expressed in E. coli and the majority of the protein accumulated in inclusion bodies. It was immunoprecipitated by a serum against mouse NGF. Solubilization of the inclusion bodies was done in 3M guanidine HCl and renaturation was effected by dilution and air oxidation in the presence of 6 microM CuSO4. Recoveries were 10-12 micrograms of rhNGF per ml of bacterial suspension. Its biological activity was tested in a bioassay system employing sympathetic chick embryo ganglia and was inhibited by the monoclonal antibody 27/21 against mouse NGF.  相似文献   

18.
A 6.3 kb DNA fragment containing genes responsible for azo-dye decolorization was cloned and expressed in Escherichia coli. The resulting recombinant strain E. coli CY1 decolorized 200 mg azo dye (C.I. Reactive Red 22) l–1 at 28 °C at 8.2 mg g cell–1 h–1, while the host (E. coli DH5) had no color-removal activity. Addition of 0.5 mM isopropyl--d-thiogalacto-pyranoside (IPTG) increased the decolorization rate 3.4-fold. The dependence of the decolorization rate on initial dye concentration essentially followed Monod-type kinetics and the maximal rate occurred with the dye at 600 mg l–1. The decolorization rate of E. coli CY1 was optimal at 40 °C and pH 11. Aeration (increased dissolved O2 level) strongly inhibited the decolorization, but decolorization occurred effectively under static incubation conditions (no agitation was employed). The CY1 strain also exhibited excellent stability during repeated-batch operations.  相似文献   

19.
Expression and purification of a recombinant LL-37 from Escherichia coli   总被引:2,自引:0,他引:2  
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic alpha-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as (15)N, (13)C and/or (2)H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C(18) column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the (15)N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform (15)N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

20.
Penicillin G acylase gene from Bacillus megaterium ATCC 14945 has been isolated. Recombinant Escherichia coli clones were screened for clear halo forming activity on the lawn of Staphylococcus aureus ATCC 6538P using the enzymatic acylating reaction of 7-aminodeacetoxycephalosporanic acid (7-ADCA) and D-(alpha)-phenylglycine methylester. The gene was contained within a 2.8 kb DNA fragment and expressed efficiently when transferred from E. coli to Bacillus subtilis. A twenty times greater amount of enzyme was produced in B. subtilis transformant than that in B. megaterium. The purified enzyme from subcloned B. subtilis showed that the native enzyme consisted of two identical subunits, each with a molecular weight of 57,000. The enzyme was able to react on various cephalosporins, i.e., cephalothin, cefamandole, cephaloridine, cephaloglycin, cephalexin and cephradine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号