首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We determined the effects of cultivation conditions (nitrogen source, salinity, light intensity, temperature) on the composition of polyunsaturated fatty acids (PUFAs) and the production of eicosapentaenoic acid (EPA) in the laboratory cultured eustigmatophycean microalga, Trachydiscus minutus. T. minutus was capable of utilizing all nitrogen compounds tested (potassium nitrate, urea, ammonium nitrate, ammonium carbonate) with no differences in growth and only minor differences in fatty acid (FA) compositions. Ammonium carbonate was the least appropriate for lipid content and EPA production, while urea was as suitable as nitrates. Salinity (0.2 % NaCl) slightly stimulated EPA content and inhibited growth. Increasing salinity had a marked inhibitory effect on growth and PUFA composition; salinity at or above 0.8 % NaCl was lethal. Both light intensity and temperature had a distinct effect on growth and FA composition. The microalga grew best at light intensities of 470–1,070 μmol photons m?2 s?1 compared to 100 μmol photons m?2 s?1, and at 28 °C; sub-optimal temperatures (20, 33 °C) strongly inhibited growth. Saturated fatty acids increased with light intensity and temperature, whereas the reverse trend was found for PUFAs. Although the highest level of EPA (as a proportion of total FAs) was achieved at a light intensity of 100 μmol photons m?2 s?1 (51.1?± 2.8 %) and a temperature of 20 °C (50.9?±?0.8 %), the highest EPA productivity of about 30 mg L?1?day?1 was found in microalgae grown at higher light intensities, at 28 °C. Overall, for overproduction of EPA in microalgae, we propose that outdoor cultivation be used under conditions of a temperate climatic zone in summer, using urea as a nitrogen source.  相似文献   

2.
To explore the possible physiological mechanism of salt tolerance in peanut, we investigated the effect of salinity on antioxidant enzyme activity, fatty acid composition, and chlorophyll fluorescence parameters. Seedlings at the initial growth stage had been treated with 0, 100, 150, 200, 250, and 300 mM NaCl for 7 days. Results showed that fresh mass and dry mass decreased with the rise of the NaCl concentration. They decreased significantly when the NaCl concentration was more than 200 mM. The PSII’s highest photochemical efficiency (F v/F m) was not affected before treating 250 mM NaCl. However, the PSII (ΦPSII)’s actual photochemical efficiency of decreased after treating 200 mM NaCl. Both the initial fluorescence (F o) and non-photochemical quenching (NPQ) increased after 200 mM NaCl treatment. PSI oxidoreductive activity (ΔI/I o) was not affected before 200 mM NaCl. The malondialdehyde (MDA) content increased with the rise of the NaCl concentration. The activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities increased first and then decreased, while the content of H2O2 and O 2 decreased first and then increased. Treated with 150 mM NaCl, the linolenic acid (18:3) and linoleic acid (18:2) of monogalactosyldiacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols (SQDG) as well as phosphatidylglycerols (PG), the ratio of DGDG/MGDG increased, and the opposite results were obtained with 300 mM NaCl. The double bond index (DBI) of MGDG, DGDG, SQDG, and PG also increased after treating 150 mM NaCl. These conclusions verified that increased unsaturated fatty acid content in membrane lipid of peanut leaves could improve salt tolerance by alleviating photoinhibition of PSII and PSI.  相似文献   

3.
Suaeda salsa L., a C3 euhalophytic herb, is native to saline soils, demonstrates high resistance to salinity stress. The effect of chilling stress on S. salsa under high salinity, particularly the change in unsaturated fatty acid content within membrane lipids, has not been investigated. After a 12 h chilling treatment (4 °C) performed under low irradiance (100 μmol m?2 s?1), the chlorophyll contents, maximal photochemical efficiency of photosystem II (F v/F m) and actual PSII efficiency (ΦPSII) were determined. These measurements were significantly decreased in S. salsa leaves in the absence of salt treatment yet there were no significant changes with a 200 mM NaCl treatment. Chlorophyll contents, F v/F m and ΦPSII in S. salsa under 200 mM NaCl were higher than those without salt treatment. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of monogalactosyldiacylglycerols, digalactosyldiacylglycerols (DGDG), sulphoquinovosyldiacylglycerols and phosphatidylglycerols (PG) significantly increased following the chilling treatment (4 °C) (with 12 h of low irradiance and 200 mM of NaCl). The DBI of DGDG and PG was decreased in the absence of the salt treatment. These results suggest that in the euhalophyte S. salsa, a 200 mM NaCl treatment increases chilling tolerance under conditions of low irradiance (100 μmol m?2 s?1).  相似文献   

4.
The influence of osmotic stress on capsaicin production was investigated in cell suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili, a chili species native to Northeastern India. The sterilized seeds were germinated in Murashige and Skoog medium. Two-week-old hypocotyls were excised from in vitro germinated seedlings and implanted in MS medium containing 2, 4-dichlorophenoxyacetic acid (2?mg/l), and Kinetin (0.5?mg/l) for callus induction. Capsaicin production in the suspension cultures was significantly affected using sucrose, mannitol, and NaCl in the medium. Stoichiometric analysis with different combinations of sucrose and non-sugar osmotic agent (NaCl) showed that osmotic stress was an important factor for enhancing capsaicin production in cell suspension cultures of C. chinense. The capsaicin content of 1,644.1???g?g?1 f.wt was recorded on day 15 in cultures grown in MS medium containing 87.64?mM sucrose in combination with 40?mM NaCl. However, osmotic stress treatment at 160?mM NaCl with sucrose resulted in lowering capsaicin accumulation and separation of cell wall from their cytoplasm, under microscopic observation.  相似文献   

5.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

6.
The marine alga Nannochloropsis oceanica has been considered as a promising photosynthetic cell factory for synthesizing eicosapentaenoic acid (EPA), yet the accumulation of EPA in triacylglycerol (TAG) is restricted to an extreme low level. Poor channeling of EPA to TAG was observed in N. oceanica under TAG induction conditions, likely due to the weak activity of endogenous diacylglycerol acyltransferases (DGATs) on EPA-CoA. Screening over thirty algal DGATs revealed potent enzymes acting on EPA-CoA. Whilst overexpressing endogenous DGATs had no or slight effect on EPA abundance in TAG, introducing selected DGATs with strong activity on EPA-CoA, particularly the Chlamydomonas-derived CrDGTT1, which resided at the outermost membrane of the chloroplast and provided a strong pulling power to divert EPA to TAG for storage and protection, led to drastic increases in EPA abundance in TAG and TAG-derived EPA level in N. oceanica. They were further promoted by additional overexpression of an elongase gene involved in EPA biosynthesis, reaching 5.9- and 12.3-fold greater than the control strain, respectively. Our results together demonstrate the concept of applying combined pulling and pushing strategies to enrich EPA in algal TAG and provide clues for the enrichment of other desired fatty acids in TAG as well.  相似文献   

7.
Thermopsis turcica is distributed naturally in saline soils. Interestingly, how T. turcica can live in harsh salt conditions is unknown. To study its defense responses under salinity, T. turcica was grown in a medium containing 100 and 200 mM NaCl for 7 and 14 days. Physiological parameters, ion contents, reactive oxygen species accumulation, activities of antioxidant enzymes/isozymes, NADPH oxidase enzyme/isozyme, lipid peroxidation (TBARS) and osmolyte contents were investigated. Stress caused a rapid decline in relative growth rate, relative water content and chlorophyll fluorescence (F v/F m) under both NaCl treatments. These traits were more suppressed at 200 mM NaCl. The decline in osmotic potential (Ψ Π) with salinity increased the gradient for water flux into the cell and assisted in turgor maintenance. The increased membrane permeability under stress caused the entrance of excess Na+ and K+ into the cell. Stress decreased superoxide dismutase, catalase and peroxidase after 14 days of growth in 200 mM NaCl, whereas glutathione reductase (GR) increased throughout the experiment. While ascorbate peroxidase (APX) increased by 44 % at 7 days, it decreased after 14 days exposure to 200 mM NaCl. 200 mM NaCl caused the highest increase in TBARS at 14 days, indicating a decrease in OH· scavenging activity. Increasing concentrations of salinity caused an increase in glycine betaine (GB) and choline (Cho), though an increase in proline was only observed at 200 mM NaCl for 14 days. Briefly, H2O2 was more efficiently eliminated in 100 mM-treated plants by the ascorbate–glutathione cycle in which APX acts a strong catalyst together with GR. Also, Cho and GB help to maintain osmotic adjustment and cytoplasmic function.  相似文献   

8.
In this study, hypersaline media were used for ocean cultivation of the marine microalga Tetraselmis sp. KCTC12432BP for enhanced biomass and fatty acid (FA) productivity. Hypersaline media (55, 80, and 105 PSU) were prepared without sterilization by addition of NaCl to seawater obtained from Incheon, Korea. The highest biomass productivity was obtained at 55 PSU (0.16 g L?1 day?1) followed by 80 PSU (0.15 g L?1 day?1). Although the specific growth rate of Tetraselmis decreased at salinities higher than 55 PSU, prevention of contamination led to higher biomass productivity at 80 PSU than at 30 PSU (0.03 g L?1 day?1). FA content of algal biomass increased as salinity increased to 80 PSU, above which it declined, and FA productivity was highest at 80 PSU. Ocean cultivation of Tetraselmis was performed using 50-L tubular module photobioreactors and 2.5-kL square basic ponds, closed- and open-type ocean culture systems, respectively. Culturing microalgae in hypersaline medium (80 PSU) improved biomass productivities by 89 and 152% in closed and open cultures, respectively, compared with cultures with regular salinity. FA productivity was greatly improved by 369% in the closed cultures. The efficacy of salinity shift and N-deficiency to enhance FA productivity was also investigated. Lowering salinity to 30 PSU with N-starvation following cultivation at 80 PSU improved FA productivity by 19% in comparison with single-stage culture without N-deficiency at 30 PSU. The results show that salinity manipulation could be an effective strategy to improve biomass and FA productivity in ocean cultivation of Tetraselmis sp.  相似文献   

9.
A translational lacZ fusion of the Bacillus subtilis mscL gene that encodes the mechanosensitive channel of large conductance (MscL) was expressed at significant levels during log phase growth of B. subtilis, and the level of mscLlacZ expression was increased 1.5-fold by growth in medium with high salt (1 M NaCl). However, in growth media with either low or high salt, mscLlacZ expression fell drastically beginning in the late log phase of growth, and fell to even lower levels during sporulation, although a significant amount of β-galactosidase from mscL to lacZ was accumulated in the developing spore. Deletion of mscL had no effect on B. subtilis growth, sporulation or subsequent spore germination. The ΔmscL strain also grew as well as the wild-type parental strain in medium with 1.2 M NaCl. While log phase wild-type cells grown with 1.2 M NaCl survived a rapid 0.9 M osmotic downshift, log phase ΔmscL cells rapidly lost viability and lysed when subjected to this same osmotic downshift. However, by the early stationary phase of growth, ΔmscL cells had become resistant to a 0.9 M osmotic downshift.  相似文献   

10.
Solute Accumulation in Tobacco Cells Adapted to NaCl   总被引:18,自引:9,他引:9       下载免费PDF全文
Cells of Nicotiana tabacum L. var Wisconsin 38 adapted to NaCl (up to 428 millimolar) which have undergone extensive osmotic adjustment accumulated Na+ and Cl as principal solutes for this adjustment. Although the intracellular concentrations of Na+ and Cl correlated well with the level of adaptation, these ions apparently did not contribute to the osmotic adjustment which occurred during a culture growth cycle, because the concentrations of Na+ and Cl did not increase during the period of most active osmotic adjustment. The average intracellular concentrations of soluble sugars and total free amino acids increased as a function of the level of adaptation; however, the levels of these solutes did not approach those observed for Na+ and Cl. The concentration of proline was positively correlated with cell osmotic potential, accumulating to an average concentration of 129 millimolar in cells adapted to 428 millimolar NaCl and representing about 80% of the total free amino acid pool as compared to an average of 0.29 millimolar and about 4% of the pool in unadapted cells. These results indicate that although Na+ and Cl are principal components of osmotic adjustment, organic solutes also may make significant contributions.  相似文献   

11.
Qualitative and quantitative composition of fatty acids (FA) in the lipids of vegetative organs of the halophyte Suaeda altissima (L.) Pall. grown at different NaCl concentrations in nutrient solution was studied. Along with this, the biomass of these organs, the content of water and Na+, Cl?, and K+ ions in them, and the ultrastructure of root and leaf cells were determined. At both low (1 mM) and high (750 mM) NaCl concentrations in nutrient solution, plants could maintain growth and water content in organs, demonstrating a noticeable increase in the dry weight and a slight increase in the water content at 250 mM NaCl. At all NaCl concentrations in nutrient solution, S. altissima tissues contained a relatively high K+ amount. Under salinity, Na+ and Cl? ions contributed substantially into the increase in the cell osmotic pressure, i.e., a decrease in their water potential; in the absence of salinity, K+ fulfilled this function. In the cells of both roots and leaves, NaCl stimulated endo- and exocytosis, supposedly involved in the vesicular compound transport. 750 mM NaCl induced plasmolysis and changes in the membrane structure, which can be interpreted as degradation processes. Under optimal NaCl concentration in medium (250 mM), the content of lipids in plant aboveground organs per fresh weight was more than 2.5-fold higher than under 1 or 750 mM NaCl, whereas in the roots opposite patten was observed. When plants were grown under non-optimal conditions, substantial changes occurred in the qualitative and quantitative FA composition in lipids of both aboveground organs and roots. Observed changes are discussed in relation to processes underlying S. altissima salt tolerance and those of disintegration occurring at the high external NaCl concentration (750 mM).  相似文献   

12.
Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day?1) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l?1 day?1 (peak 0.4 g l?1 day?1) at 0.4 day?1 in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l?1 day?1.  相似文献   

13.
Homospermidine is a polyamine present in its highest concentrations in root nodule bacteria. By using the soybean rhizobia Rhizobium fredii P220 and Bradyrhizobium japonicum A1017, the effects of the pH and osmolarity of the medium on rhizobial growth and cellular polyamine contents were investigated. Elevation of medium pH repressed the growth of slowly growing B. japonicum A1017 and resulted in a slight increase in cellular putrescine, while homospermidine content was not significantly affected. In contrast, in fast-growing R. fredii P220, which showed good growth over a wide range of the medium pHs from 4.0 to 9.5, homospermidine content increased with the lowering of the medium pH. Under the acid-stressed conditions, cellular Mg2+ content in strain P220 also increased. Strain P220 was able to grow in NaCl concentrations up to 0.4 M, while strain A1017 did not grow in media containing 0.15 M NaCl. Glutamic acid and K+ contents of salt-tolerant P220 cells increased in response to NaCl concentrations, but homospermidine and Mg2+ contents were inversely related to the NaCl concentrations. External salinity had no effect on the contents of other polyamines in P220 cells. On the basis of osmotic strength, NaCl, KCl, sucrose, or glycerol induced similar decreases in cellular homospermidine content. These results suggested that the cellular levels of homospermidine in strain P220 may be regulated by mechanisms related to their pH and osmotic tolerance.  相似文献   

14.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

15.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35?±?0.5 mg g?1 cell dry weight) and EPA (0.12?±?0.04 mg g?1 cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.  相似文献   

16.
Rhizobium meliloti, like many other bacteria, accumulates high levels of glutamic acid when osmotically stressed. The effect was found to be proportional to the osmolarity of the growth medium. NaCl, KCI, sucrose, and polyethylene glycol elicited this response. The intracellular levels of glutamate and K+ began to increase immediately when cells were shifted to high-osmolarity medium. Antibiotics that inhibit protein synthesis did not affect this increase in glutamate production. Cells growing in conventional media at any stage in the growth cycle could be suspended in medium causing osmotic stress and excess glutamate accumulated. The excess glutamate did not appear to be excreted, and the intracellular level eventually returned to normal when osmotically stressed cells were suspended in low-osmolarity medium. A glt mutant lacking glutamate synthase and auxotrophic for glutamate accumulated excess glutamate in response to osmotic stress. Addition of isoleucine, glutamine, proline, or arginine stimulated glutamate accumulation to wild-type levels when the mutant cells were suspended in minimal medium with NaCl to cause osmotic stress. In both wild-type and mutant cells, inhibitors of transaminase activity, including azaserine and aminooxyacetate, reduced glutamate levels. The results suggest that the excess glutamate made in response to osmotic stress is derived from degradation of amino acids and transamination of 2-ketoglutarate.  相似文献   

17.
Nasturtium officinale R. Br. seedlings were treated with a range of NaCl concentrations (0, 50, 100 and 150 mM) for 21 days after seedling emergence. Physiological analysis based on growth and mineral nutrition, showed a substantial decrease in leaf dry matter with 150 mM NaCl treatment. The growth decrease was correlated with nutritional imbalance and a reduction in potassium accumulation and transport to the leaves. At the same time, we noted an increase in leaf sodium and chloride accumulation and transport. Salt tolerance of N. officinale under 100 mM NaCl was associated with osmotic adjustment via Na+ and Cl? and the maintenance of high K+/Na+ selectivity. Salt decreased carotenoid content more than chlorophylls and also disturbed membrane integrity by increasing malondialdehyde content and electrolyte leakage. At 150 mM NaCl, an increase in antioxidant enzyme-specific activities for superoxide dismutase, catalase and guaiacol peroxidase occurred in concert with a decrease in ascorbic acid, polyphenol, tannin and flavonoid content. These results indicate that N. officinale can maintain growth and natural antioxidant defense compounds such as, vitamin C, carotenoids, and polyphenols, when cultivated in 100 mM NaCl, but not at higher salt levels.  相似文献   

18.
The influence of NO 3 ? -N on growth and osmotic adjustment was studied in Tamarix laxa Willd., a halophyte with salt glands on its twigs. Seedlings of T. laxa Willd. were exposed to 1 mM (control) or 300 mM NaCl, with 0.05, 1 or 10 mM NO 3 ? -N for 24 days. The relative growth rate of seedlings at 300 mM NaCl was lower than that of control plants at all NO 3 ? -N levels, but the concentrations of organic N and total N in the twigs did not differ between the two NaCl treatments. Increasing NO 3 ? supply under 300 mM NaCl improved the growth of T. laxa, indicating that NO 3 ? played positive roles in improving salt resistance of the plant. The twigs of T. laxa Willd. accumulated mainly inorganic ions, especially Na+ and Cl?, to lower osmotic potential (Ψs): the contributions of Na+ and Cl? to Ψs were estimated at 31% and 27% respectively, at the highest levels of supply of both NaCl and NO 3 ? -N. The estimated contribution of NO 3 ? -N to Ψs was as high as 20% in the twigs in these conditions, indicating that NO 3 ? was also involved in osmotic adjustment in the twigs. Furthermore, increases in tissue NO 3 ? were accompanied by decreases in tissue Cl? and proline under 300 mM NaCl. The estimated contribution of proline to Ψs declined as with NO 3 ? -N supply increased from 1 to 10 mM, while the contributions of nitrate to Ψs were enhanced under 300 mM NaCl. This suggested that higher accumulation of nitrate in the vacuole alleviated the effects of salinity stress on the plant by balancing the osmotic potential. In conclusion, NO 3 ? -N played both nutritional and osmotic roles in T. laxa Willd. in saline conditions.  相似文献   

19.
20.
Today microalgae represent a viable alternative source for high-value products. The specie Chlorella protothecoides (Cp), heterotrophically grown, has been widely studied and provides a high amount of lutein and fatty acids (FA) and has a good profile for biodiesel production. This work studies carotenoid and FA production by autotrophic grown Cp. Cp was grown until the medium’s nitrogen was depleted, then diluted in NaCl solution, resulting in nutritional, luminosity, and salinity stresses. Different NaCl concentrations were tested (10, 20, 30 g/L) at two different dilutions. After dilution, a color shifting from green to orange-red was noticed, showing carotenoid production. The best production of both carotenoids and FA was attained with a 20 g/L NaCl solution. The total carotenoid content was 0.8 % w/w (canthaxanthin (23.3 %), echinenone (14.7 %), free astaxanthin (7.1 %), and lutein/zeaxanthin (4.1 %)). Furthermore, the total lipid content reached 43.4 % w/w, with a FA composition of C18:1 (33.64 %), C16:0 (23.30 %), C18:2 (11.53 %), and less than 12 % of C18:3, which is needed to fulfill the biodiesel quality specifications (EN 14214).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号