首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.  相似文献   

2.
Microcalorimetry is a useful tool for monitoring the growth behavior of microorganisms. In this study, microcalorimetry was used to investigate the effects of nitrogen, air, oxygen, nitrous oxide, argon, and krypton at high pressure on the growth of the yeast Saccharomyces cerevisiae. Growth thermograms (metabolic heat vs. incubation time) were generated to estimate metabolic activity under compressed gases and to determine the 50% inhibitory pressure (IP(50)) and minimum inhibitory pressure (MIP), which are regarded as indices of the toxicity of compressed gases. Based on MIP values, the most toxic to the least toxic gases were found to be: O(2) > N(2)O > air > Kr > N(2) > Ar.  相似文献   

3.
Studies of the growth-modifying actions for Escherichia coli, Saccharomyces cerevisiae, and Tetrahymena thermophila of helium, nitrogen, argon, krypton, xenon, and nitrous oxide led to the conclusion that there are two definable classes of gases. Class 1 gases, including He, N(2), and Ar, are not growth inhibitors; in fact, they can reverse the growth inhibitory action of hydrostatic pressures. Class 2 gases, including Kr, Xe, and N(2)O, are potent growth inhibitors at low pressures. For example, at 24 degrees C, 50% growth-inhibitory pressures of N(2)O were found to be ca. 1.7 MPa for E. coli, 1.0 MPa for S. cerevisiae, and 0.5 MPa for T. thermophila. Class 1 gases could act as potentiators for growth inhibition by N(2)O, O(2), Kr, or Xe. Hydrostatic pressure alone is known to reverse N(2)O inhibition of growth, but we found that it did not greatly alter oxygen toxicity. Therefore, potentiation by class 1 gases appeared to be a gas effect rather than a pressure effect. The temperature profile for growth inhibition of S. cerevisiae by N(2)O revealed an optimal temperature for cell resistance of ca. 24 degrees C, with lower resistance at higher and lower temperatures. Overall, it appeared that microbial growth modification by hyperbaric gases could not be related to their narcotic actions but reflected definably different physiological actions.  相似文献   

4.
Inert gases at high pressure may compress and dissolve in tissue of intact organism to result in narcosis, reversal of the effects of anesthetic agents or hyperexcitability. The effects of 51 and 102 atm of helium, hydrogen, nitrogen, argon, xenon and nitrous oxide on the molecular motion of nitroxide spin-labeled phospholipid-cholesterol bilayers were measured by electron paramagnetic resonance (EPR) techniques. Immediately, application of high pressures of all gases decreased the molecular motion of the fatty acid chains of the membrane phospholipids; the magnitude of ordering was linearly related to the amount of pressure applied. The second effect was an increase in molecular motion of the fatty acid chains which appeared more slowly due to the slow gas diffusion through the column of lipid dispersion. The magnitude of disorder of the phospholipid membrane at equilibrium correlated with the known lipid solubilities of the gases in olive oil as well as with the anesthetic potency of all the gases except xenon. The environment of the spin label became less polar as the gases diffused into the bilayer. The present studies in the phospholipid model membrane show that the net effects of high pressure gases in the lipid phase consist of an initial ordering of the membrane by compression opposed by the ability of the gas molecules to diffuse and dissolve in the lipid bilayers and disorder them. It is thus suggested that the resultant perturbations of the membrane lipid fluidity by high pressure gases may subsequently be transmitted to membrane-bound protein to result in changes that may be associated, in part, with the diverse effects of anesthesia and of the high pressure nervous syndrome (HPNS) observed in deep-sea divers. The model system may be useful in developing gas mixtures which minimize HPNS.  相似文献   

5.
Binary mixtures of helium with nitrogen, xenon or nitrous oxide were applied to suspensions of phosphatidylcholine-cholesterol vesicles to determine those mixtures of lipid soluble gases which would exactly antagonize the membrane rigidifying effect of 100 ATA compression. A previous study has shown that the initial application of 100 ATA compression by gas produces a significant reduction in the fluidity of the phospholipid bilayer. However, as the high pressure gas dissolves into the lipid region it creates disorder and increases fluidity. Fluidity of the bilayer at equilibrium represents the sum of the compression-ordering and dissolved-gas disordering effects and is dependent on the gas/lipid partition coefficient of the particular gas. The beneficial effect of a narcotic gas added to Trimix mixtures to ameliorate HPNS in deep divers may be due to a balance of compression-ordering and solubility-disordering effects achieved within the nerve membrane. It is therefore valuable to determine those gas mixtures which achieve balance of these two effects and result in zero net change in phospholipid bilayer fluidity at an established pressure of 100 ATA. Binary mixtures of helium with 88% nitrogen, 3.8% xenon or 2.8% nitrous oxide resulted in zero net change in bilayer fluidity with our model system at 100 ATA. A graph of the percent of narcotic gas needed to produce zero net effect as a function of pressure, however, was nonlinear. This would suggest the ratio of gases in Trimix must be varied as a function of pressure. While the phosphatidylcholine-cholesterol bilayer is a good model for certain components of the nerve membrane, it does not allow for study of protein-lipid or gas-protein interactions. The data presented thus aid in our understanding of HPNS but are yet incomplete for precise use in predicting diving mixtures.  相似文献   

6.
Exposure to nitrogen–oxygen mixture at high pressure induces narcosis, which can be considered as a first step toward general anaesthesia. Narcotic potencies of inert gases are attributed to their lipid solubility. Nitrogen narcosis induces cognitive and motor disturbances that occur from 0.3 MPa in man and from 1 MPa in rats. Neurochemical studies performed in rats up to 3 MPa have shown that nitrogen pressure decreases striatal dopamine release like argon, another inert gas, or nitrous oxide, an anaesthetic gas. Striatal dopamine release is under glutamatergic and other amino acid neurotransmission regulations. The aim of this work was to study the effects of nitrogen at 3 MPa on striatal amino acid levels and to compare to those of 3 MPa of helium which is not narcotic at this pressure, by using a new technique of microdialysis samples extraction under hyperbaric conditions, in freely moving rats. Amino acids were analysed by HPLC coupled to fluorimetric detection in order to appreciate glutamate, aspartate, glutamine and asparagine levels. Nitrogen–oxygen mixture exposure at 3 MPa decreased glutamate, glutamine and asparagine concentrations. In contrast, with helium–oxygen mixture, glutamate and aspartate levels were increased during the compression phase but not during the stay at maximal pressure. Comparison between nitrogen and helium highlighted the narcotic effects of nitrogen at pressure. As a matter of fact, nitrogen induces a reduction in glutamate and in other amino acids that could partly explain the decrease in striatal dopamine level as well as the motor and cognitive disturbances reported in nitrogen narcosis.  相似文献   

7.
《Life sciences》1995,56(25):PL455-PL460
Halothane and isoflurane increase the rate of phospholipid methylation (PLM) in rat brain synaptosomal membranes, a process linked to the coupling of neuronal excitation to neurotransmitter release. In contrast, synaptic plasma membrane (SPM) Ca2+ ATPase (PMCA) pumping is reduced by exposure to halothane, isoflurane, xenon and nitrous oxide (N2O). To examine further the relationship between PLM, PMCA and anesthetic action, we investigated the effect of clinically relevant concentrations of two less potent anesthetic gases, N2O and xenon, on PLM in SPM. Biochemical assays were performed on SPM exposed to 1.3 MAC of N2O (2 atm), 1.3 MAC of xenon (1.23 atm) or an equivalent pressure of helium for control. N2O or xenon exposure increased PLM to 115% or 113%, respectively, of helium control (p < 0.02). Similar exposures to N2O or xenon depressed PMCA activity to 78% and 85% of control (p < 0.05). Observations that PLM and PMCA are both altered by a wide variety of inhalation anesthetic agents at clinically relevant partial pressures lend support to a possible involvement and interaction of these processes in anesthetic action.  相似文献   

8.
We describe a kinetic Monte Carlo molecular simulation procedure to calculate the Helmholtz free energy, the entropy and the chemical potentials of all components in a bulk fluid mixture. This allows us to derive the excess properties (volume, free energy and entropy) resulting from the mixing of homogeneous fluids of pure components at constant temperature and pressure. We have chosen neon–xenon mixtures to illustrate our method because of the large difference in collision diameter and well-depth of the interaction energy. When xenon is predominant in the mixture, the volume of mixing is larger. The excess entropy of mixing correlates with the volume of mixing, since a positive excess volume enables more configurations (more possible molecular distributions). The excess thermodynamic quantities as functions of the total density were found to be insensitive to temperature. To investigate the effects of the molecular parameters, we also studied argon–nitrogen and argon–krypton mixtures. The effect of the difference in molecular parameters is in the order: argon–nitrogen < argon–krypton < neon–xenon. A large difference in the well-depth of the interaction energies results in an increase in the excess thermodynamic variables, which is in agreement with the literature McDonald IR. NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Mol Phys. 1972;23(1):41–58; Singer JVL, Singer K. Monte Carlo calculation of thermodynamic properties of binary mixtures of Lennard-Jones (12-6) liquids. Mol Phys. 1972;24(2):357–390.  相似文献   

9.
The effects of xenon, argon, and hydrogen on the aerobic and anaerobic metabolism of mouse liver, brain, and sarcoma slices have been investigated. Xenon was found to alter the rates of metabolism of these tissues in a manner almost identical with helium. The gas increased the rate of oxygen consumption in all three tissues and significantly depressed that of anaerobic glycolysis in brain and liver. The depression of glycolysis in sarcoma was less pronounced and not highly significant. Although both the magnitude and statistical significance of the effects observed with argon were much smaller, there was a seeming adherence to the general pattern established by xenon and helium. Hydrogen while remaining essentially ineffective insofar as oxygen uptake was concerned, depressed glycolysis in both liver and brain slices but did not significantly affect sarcoma slices. The following points are stressed in the Discussion: (1) the magnitude and direction of effects exerted by helium, argon, xenon, hydrogen, and nitrogen do not conform with the relative values of molecular weight, density, and solubility of these gases; (2) the effect of these gases on tissue metabolism does not necessarily parallel that exerted upon the whole organism.  相似文献   

10.
The sensitivity of Streptococcus faecalis growth to hydrostatic pressures ranging up to 550 atm was found to depend on the source of adenosine triphosphate for growth. Barotolerance of cultures growing in a complex medium with ribose as major catabolite appeared to be determined primarily by the pressure sensitivity of ribose-degrading enzymes. Apparent activation volumes for growth were nearly identical to those for lactate production from ribose, and yield coefficients per mole of ribose degraded were relatively independent of pressure. In contrast, cultures with glucose as main catabolite were less sensitive to pressure; glycolysis was less severely restricted under high pressure than was growth, and yield coefficients declined with pressure, especially above 400 atm. Thus, two distinct types of barotolerance could be defined-one dominated by catabolic reactions and one dominated by noncatabolic reactions. The results of experiments with a series of other catabolites further supported the view that catabolic reactions can determine streptococcal barotolerance. We also found that growing, glucose-degrading cultures increased in volume under pressure in the same manner that they do at 1 atm. Thus, it appeared that the bacterium has no alternative means of carrying out glycolysis under pressure without dilatation. Also, the observation that cultures grown under pressure did not contain abnormally large or morphologically deformed cells suggested that pressure did not inhibit cell division more than cell growth.  相似文献   

11.
The phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine was studied under high pressures of helium (340 atm), nitrogen (340 atm), nitrous oxide (43 atm), cyclopropane (4.4 atm) and n-propane (8.2 atm), using a turbidimetric technique. Helium and nitrogen increased the transition temperature by 0.021 and 0.006°C/atm, respectively, compared with 0.024°C/atm for hydrostatic pressure. Nitrous oxide reduced the transition by 0.58°C/atm. The hydrocarbon gases spread the transition width and lowered the transition temperature with increasing effect at higher doses. Comparisons with other membrane probes are made and the concentration of gases in the bilayer which lower the transition temperature by 1°C are estimated, in mol%: He, 10.2; N2, 13.2; N2O, 9.04; n-C3H8, 6.3 and cyclopropane, 12.8.  相似文献   

12.
Balon N  Risso JJ  Blanc F  Rostain JC  Weiss M 《Life sciences》2003,72(24):2731-2740
Inert gas narcosis is a neurological syndrome appearing when humans or animals are exposed to hyperbaric inert gases (nitrogen, argon) composed by motor and cognitive impairments. Inert gas narcosis induces a decrease of the dopamine release at the striatum level, structure involved in the regulation of the extrapyramidal motricity. We have investigated, in freely moving rats exposed to different narcotic conditions, the relationship between the locomotor and motor activity and the striatal dopamine release, using respectively a computerized device that enables a quantitative analysis of this behavioural disturbance and voltammetry. The use of 3 MPa of nitrogen, 2 MPa of argon and 0.1 MPa of nitrous oxide, revealed after a transient phase of hyperactivity, a lower level of the locomotor and motor activity, in relation with the decrease of the striatal dopamine release. It is concluded that the striatal dopamine decrease could be related to the decrease of the locomotor and motor hyperactivity, but that other(s) neurotransmitter(s) could be primarily involved in the behavioural motor disturbances induced by narcotics. This biphasic effect could be of major importance for future pharmacological investigations, and motor categorization, on the basic mechanisms of inert gas at pressure.  相似文献   

13.
The marine archaebacterium Methanococcus jannaschii was studied at high temperatures and hyperbaric pressures of helium to investigate the effect of pressure on the behavior of a deep-sea thermophile. Methanogenesis and growth (as measured by protein production) at both 86 and 90°C were accelerated by pressure up to 750 atm (1 atm = 101.29kPa), but growth was not observed above 90°C at either 7.8 or 250 atm. However, growth and methanogenesis were uncoupled above 90°C, and the high-temperature limit for methanogenesis was increased by pressure. Substantial methane formation was evident at 98°C and 250 atm, whereas no methane formation was observed at 94°C and 7.8 atm. In contrast, when argon was substituted for helium as the pressurizing gas at 250 atm, no methane was produced at 86°C. Methanogenesis was also suppressed at 86°C and 250 atm when the culture was pressurized with a 4:1 mix of H2 and CO2, although limited methanogenesis did occur when the culture was pressurized with H2.  相似文献   

14.
The effects of helium, nitrogen, argon and krypton on Echinosphaerium nucleofilum (Heliozoa) have been studied at partial pressures of 10-130 atm. Additional experiments have been carried out with hydrostatic pressure alone. Helium causes shortening of the axopods over the whole range of pressures, and damage to the cell body at pressures of 60-90 atm, both with a maximum at 80 atm. These effects cannot be explained in terms of hydrostatic pressure alone; a 'pressure reversal' effect may be operating, causing the peak at 80 atm. Nitrogen also causes both cell damage and axopod shortening, the severity increasing with increasing pressure. Argon and krypton cause cell damage but no shortening. The order of potency for cell damage is krypton greater than argon greater than nitrogen greater than helium. It is suggested that there may be tuo sites of action, possibly the microtubules (for axopod shortening) and the cell membrane (for cell damage). In appropriate mixtures of helium and argon, both the cell damage usually caused by argon, and the axopod shortening usually caused by helium, are prevented. Possible mechanisms include the effects of hydrostatic pressure on gas solubility coefficients, reversal of the effects of the gases by the increase in total pressure, and competition for sites of action.  相似文献   

15.
Effects of helium group gases and nitrous oxide on HeLa cells   总被引:2,自引:0,他引:2  
The helium group gases and nitrous oxide at superatomospheric pressures depress multiplication of HeLa cells in monolayer cultures. The effectiveness of these gases in eliciting the pressure-dependent response follows the order N2O, Xe > Kr > Ar > > Ne and He. The response correlates with lipid solubility of the gases. Depression of growth by 4.2 atm Xe is reversible after exposure for one and two days. Cultures exposed to 7.2 atm Xe show irreversible damage including cytoplasmic vacuolization. Cell attachment is strongly inhibited by Xe; 36% of the cell inoculum were not attached after 24 hours. Affinity for hydrophobic sites in the cell is suggested as determining the order of effectiveness of the gases in evoking the response.  相似文献   

16.
Summary Growth of a lactic streptococcus was studied in continuous cultures, under various conditions of medium richness, without carbon source limitation, and with a large range of dilution rates. Increasing the concentrations of growth factors and protein nitrogen sources resulted in increased volumetric productivities of biomass and lactic acid with maximum values in the 0.3–0.4 h–1 dilution rate range. Growth was shown to be dependent on both the inhibitory effect of lactic acid and the availability of certain nutrients, as has previously been shown for batch cultures.Offprint requests to: A. Pareilleux  相似文献   

17.
Growth of Streptococcus faecalis in complex media with various fuel sources appeared to be limited by the rate of supply of adenosine-5′ -triphosphate (ATP) at 1 atm and also under 408 atm of hydrostatic pressure. Growth under pressure was energetically inefficient, as indicated by an average cell yield for exponentially growing cultures of only 10.7 g (dry weight) per mol of ATP produced compared with a 1-atm value of 15.6. Use of ATP for pressure-volume work or for turnover of protein, peptidoglycan, or stable ribonucleic acid (RNA) did not appear to be significant causes of growth inefficiency under pressure. In addition, there did not seem to be an increased ATP requirement for ion uptake because cells growing at 408 atm had significantly lower internal K+ levels than did those growing at 1 atm. Pressure did stimulate the membrane adenosine triphosphatase (ATPase) or S. faecalis at ATP concentrations greater than 0.5 mM. Intracellular ATP levels were found to vary during the culture cycle from about 2.5 μmol/ml of cytoplasmic water for lag-phase or stationary-phase cells to maxima for exponentially growing cells of about 7.5 μmol/ml at 1 atm and 5.5 μmol/ml at 408 atm. N,N′-dicyclohexylcarbodiimide at a 10 μM concentration improved growth efficiency under pressure, as did Mg2+ or Ca2+ ions at 50 mM concentration. These agents also enhanced ATP pooling, and it seemed that at least part of the growth inefficiency under pressure was due to increased ATPase activity. In all, it appeared that S. faecalis growing under pressure has somewhat reduced ATP supply but significantly increased demand and that the inhibitory effects of pressure can be interpreted largely in terms of ATP supply and demand.  相似文献   

18.
Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.  相似文献   

19.
The growth rate responses of Escherichia coli M23 (a nonpathogenic strain) to suboptimal pH and lactic acid concentration were determined. Growth rates were measured turbidimetrically at 20 degrees C in the range of pH 2.71 to 8.45. The total concentration of lactic acid was fixed at specific values, and the pH was varied by the addition of a strong acid (hydrochloric) or base (sodium hydroxide) to enable the determination of undissociated and dissociated lactic acid concentrations under each condition. In the absence of lactic acid, E. coli grew at pH 4.0 but not at pH 3.7 and was unable to grow in the presence of > or = 8.32 mM undissociated lactic acid. Growth rate was linearly related to hydrogen ion concentration in the absence of lactic acid. In the range 0 to 100 mM lactic acid, growth rate was also linearly related to undissociated lactic acid concentration. A mathematical model to describe these observations was developed based on a Bĕlehrádek-like model for the effects of water activity and temperature. This model was expanded to describe the effects of pH and lactic acid by the inclusion of novel terms for the inhibition due to the presence of hydrogen ions, undissociated lactic acid, and dissociated lactic acid species. Preliminary data obtained for 200 and 500 mM total lactic acid concentrations show that the response to very high lactic acid concentrations was less well described by the model. However, for 0 to 100 mM lactic acid, the model described well the qualitative and quantitative features of the response.  相似文献   

20.
Investigation of a series of 150 obstetric patients, the majority undergoing caesarean section, showed the expected figure of 2% with factual recall. There was, however, a 17·3% occurrence of unpleasant recall—associated in 10 cases (6·6% of the total) with recall of pain. There was a negative correlation between the giving of a narcotic within six hours of the operation and the occurrence of unpleasant recall. Several other aetiological factors—age, parity, preoperative emotional tension, ventilation, nitrous oxide wash-out with oxygen, and nitrous oxide concentration—were investigated and no relation was found between them and unpleasant recall. It is suggested, therefore, that premedication still has an important function in light anaesthesia, using muscle relaxants, to prevent any form of unpleasant operative awareness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号