首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report we examine the factors that regulate photosynthesis during leaf ontogeny in y3y3 and Y11y11, two chlorophyll-deficient mutants of soybean. Photosynthetic rates were similar during wild type and Y11y11 leaf development, but the senescence decline in photosynthesis was accelerated in y3y3. Photosynthetic rates fell more rapidly than chlorophyll concentrations during senescence in wild type leaves, indicating that light harvesting is not strongly limiting for photosynthesis during this phase of leaf development. Chlorophyll concentrations in Y11y11, though significantly lower than normal, were able to support normal photosynthetic rates throughout leaf ontogeny. Chlorophyll a/b ratios were constant during leaf development in the wild type, but in the mutants they progressively increased (y3y3) or decreased (Y11y11). In all three sets of plants, photosynthetic rates were directly proportional to Rubisco contents and activities, suggesting that Rubisco plays a dominant role in regulating photosynthesis throughout leaf ontogeny in these plants. The expression of some photosynthetic proteins, such as Rubisco activase, was coordinately regulated with that of Rubisco in all three genotypes, i.e. an early increase, coincident with leaf expansion, followed by a senescence decline in the fully-expanded leaf. On the other hand, the light harvesting chlorophyll a/b-binding proteins of PS II (the CAB proteins), while they showed a profile similar to that of Rubisco in the wild type and y3y3, progressively increased in amount during Y11y11 leaf development. We conclude that Y11y11 may be defective in the accumulation of a component required for LHC II assembly or function, while y3y3 has more global effects and may be a regulatory factor that controls the duration of senescence.  相似文献   

2.
In higher plants, plastids and mitochondria are the predominant carriers of extrachromosomal genetic information. There is interplay between the plastids, the mitochondria, and the nuclear genome. In soybean, Glycine max (L.) Merr., both nuclearly and maternally inherited chlorophyll-deficient mutants have been described. Conditional lethality previously was reported in soybean when maternally inherited chlorophyll-deficient mutant (Genetic Type T275) was crossed with nuclearly inherited yellow foliar malate dehydrogenase null mutants (Genetic Types T253 and T323). Our objective was to test for conditional lethality when maternally inherited yellow foliar mutants T278, T314, T315, T316, T319, and T320 were female parents and nuclearly inherited yellow foliar malate dehydrogenase null mutants T253 and T323 were male parents. Our results indicated conditional lethality in the F2 generation when any of the six cytoplasmically inherited yellow foliar mutants were female parents and either T253 or T323 were male parents. The physiological nature of conditional lethality is not known. Data indicate a common basis in soybean for conditional lethality among the cytoplasmically inherited yellow foliar mutants when crossed with the nuclearly inherited yellow foliar malate dehydrogenase null mutants. No interactions were observed between cytoplasmically inherited or nuclearly inherited green seed embryo mutants as female parents and either T253 or T323 as male parents.  相似文献   

3.
Summary Conditional lethality in soybean, Glycine max (L.) Merr., occurred in F2 plants when cytoplasmicchlorophyll mutant Genetic Type T275 was the female parent and when either nuclear mutants T253 or T323 plants were the male parents. Mutant T253 [Mdh1-n (Urbana) y20 (Urbana) k2] is missing two of three mitochondrial malate dehydrogenase isozymes [Mdh1-n (Urbana)] and has yellowish-green leaves [y20 (Urbana)] and a tan-saddle pattern seed coat (k2). Mutant T323 [Mdh1-n (Ames 2) y20 (Ames 2)] also is missing two of three mitochondrial malate dehydrogenase isozymes [Mdh1-n (Ames 2)] and has yellowishgreen leaves [y20 (Ames 2)], but has yellow seed coat (K2). Mutants T275, T253, and T323 are viable both in the field and glasshouse. The genotypes cyt-Y2 Mdh1-n (Urbana) y20 (Urbana) k2/Mdh1-n (Urbana) y20 (Urbana) k2 and cyt-Y2 Mdh1-n (Ames 2) y20 (Ames 2)/Mdh1-n (Ames 2) y20 (Ames 2) are conditional lethals. These genotypes are lethal under field conditions, but plants survive in reduced light under shadecloth in the glasshouse. We do not know if their interaction with cyt-Y2 is due to Mdh1-n, y20, or Mdh1-n y20. The reciprocal cross (cyt-Y2 as male parent) gives viable genotypes. These conditional lethal genotypes should be useful for studies on the interaction between organelle and nuclear genomes.This is journal paper no. J-14777 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011-1010. Project 2985  相似文献   

4.
Duplicate marker loci can result in incorrect locus orders on linkage maps   总被引:1,自引:0,他引:1  
Genetic linkage maps, constructed from multi-locus recombination data, are the basis for many applications of molecular markers. For the successful employment of a linkage map, it is essential that the linear order of loci on a chromosome is correct. The objectives of this theoretical study were to (1) investigate the occurrence of incorrect locus orders caused by duplicate marker loci, (2) develop a statistical test for the detection of duplicate markers, and (3) discuss the implications for practical applications of linkage maps. We derived conditions, under which incorrect locus orders do or do not occur with duplicate marker loci for the general case of n markers on a chromosome in a BC1 mapping population. We further illustrated these conditions numerically for the special case of four markers. On the basis of the extent of segregation distortion, an exact test for the presence of duplicate marker loci was suggested and its power was investigated numerically. Incorrect locus orders caused by duplicate marker loci can (1) negatively affect the assignment of target genes to chromosome regions in a map-based cloning experiment, (2) hinder indirect selection for a favorable allele at a quantitative trait locus, and (3) decrease the efficiency of reducing the length of the chromosome segment attached to a target gene in marker-assisted backcrossing.Communicated by G. WenzelM. Frisch and M. Quint contributed equally to this article.  相似文献   

5.
6.
The gas exchange traits of wild type soybeans (cv. Clark) and a near-isogenic, chlorophyll-deficient line homozygous for the recessive allele y9 (y9y9) were compared under either well-watered or water-stress conditions. Mature leaves of y9 had a 65% lower chlorophyll content than wild type. However, the net photosynthetic rate (PN) of y9 leaves was only 20% lower than in the wild type, irrespective of water availability. Transpiration rates (E) were significantly higher in leaves of y9, compared to the wild type, either under well-watered or stress conditions. The higher E of y9 correlated with increased stomatal conductance, particularly in the abaxial epidermis, where more than 70% of the stomata were located. The combination of lower PN and increased E resulted in a significant decrease of water use efficiency in y9, at both water availability levels. The relative water content decreased in stressed leaves, much more in y9 than in wild type leaves, probably because of the higher E of the mutant line. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Luquez  V.M.  Guiamet  J.J.  Montaldi  E.R. 《Photosynthetica》1998,34(1):125-131
The gas exchange traits of wild type soybeans (cv. Clark) and a near-isogenic, chlorophyll-deficient line homozygous for the recessive allele y9 (y9y9) were compared under either well-watered or water-stress conditions. Mature leaves of y9 had a 65% lower chlorophyll content than wild type. However, the net photosynthetic rate (PN) of y9 leaves was only 20% lower than in the wild type, irrespective of water availability. Transpiration rates (E) were significantly higher in leaves of y9, compared to the wild type, either under well-watered or stress conditions. The higher E of y9 correlated with increased stomatal conductance, particularly in the abaxial epidermis, where more than 70% of the stomata were located. The combination of lower PN and increased E resulted in a significant decrease of water use efficiency in y9, at both water availability levels. The relative water content decreased in stressed leaves, much more in y9 than in wild type leaves, probably because of the higher E of the mutant line.  相似文献   

8.
P P Morgan 《CMAJ》1987,137(11):999-1000
  相似文献   

9.
Mapping genetic loci for iron deficiency chlorosis in soybean   总被引:7,自引:0,他引:7  
The objective of this study was to map genes controlling iron deficiency chlorosis in two intraspecific soybean [Glycine max (L.) Merrill] populations. Chlorosis symptoms were evaluated by visual scores and spectrometric chlorophyll determinations at the V4 stage (third trifoliolate leaf fully developed) in the field in 1993, and at V2 (first trifoliolate leaf fully developed) and V4 stages in 1994. A total of 89 RFLP and 10 SSR markers in the Pride B216 x A15 population, and 82 RFLP, 14 SSR and 1 morphological I (hilum color) markers in the Anoka x A7 population were used to map quantitative trait loci (QTL) affecting iron deficiency chlorosis. QTL with minor effects were detected on six linkage groups of the Pride B216 x A15 population, suggesting a typical polygene mechanism. In contrast, in the Anoka x A7 population, one QTL contributed an average of 72.7% of the visual score variation and 68.8% of the chlorophyll concentration variation and was mapped on linkage group N. Another QTL for visual score variation, and one for chlorophyll concentration variation were detected on linkage groups A1 and I, respectively. Due to the large LOD score and major genetic effect of the QTL on linkage group N, the quantitative data was reclassified into qualitative data fitting a one major gene model according to the means of the QTL genotypic classes. The major gene was mapped in the same interval of linkage group N using both visual scores and chlorophyll concentrations, thus verifying that one major gene is involved in segregation for iron chlorosis deficiency in the Anoka x A7 population. This study supported a previous hypothesis that two separate genetic mechanisms control iron deficiency in soybean.  相似文献   

10.
Resistance to the soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is difficult to evaluate in soybean [Glycine max (L.) Merr.] breeding. PI 437.654 has resistance to more SCN race isolates than any other known soybean. We screened 298 F67 recombinant-inbred lines from a cross between PI 437.654 and BSR101 for SCN race-3 resistance, genetically mapped 355 RFLP markers and the I locus, and tested these markers for association with resistance loci. The Rhg 4 resistance locus was within 1 cM of the I locus on linkage group A. Two additional QTLs associated with SCN resistance were located within 3cM of markers on groups G and M. These two loci were not independent because 91 of 96 lines that had a resistant-parent marker type on group G also had a resistant-parent marker type on group M. Rhg 4 and the QTL on G showed a significant interaction by together providing complete resistance to SCN race-3. Individually, the QTL on G had greater effect on resistance than did Rhg 4, but neither locus alone provided a degree of resistance much different from the susceptible parent. The nearest markers to the mapped QTLs on groups A and G had allele frequencies from the resistant parent indicating 52 resistant lines in this population, a number not significantly different from the 55 resistant lines found. Therefore, no QTLs from PI 437.654 other than those mapped here are expected to be required for resistance to SCN race-3. All 50 lines that had the PI 437.654 marker type at the nearest marker to each of the QTLs on groups A and G were resistant to SCN race-3. We believe markers near to these QTLs can be used effectively to select for SCN race-3 resistance, thereby improving the ability to breed SCN-resistant soybean varieties.  相似文献   

11.
Chimeric (variegated) foliage plants are frequently observed in many species. In soybean [Glycine max(L.) Merr.], progeny of chimeric plants are a source of nuclear and cytoplasmically inherited mutants. Self-pollinated progeny of a single chimeric plant derived from tissue culture of PI 427099 (Jilin 3) included plants with green foliage, chimeric foliage, yellow foliage (viable), and yellow foliage (lethal). Our objectives were to determine (1) inheritance, linkage, and allelism of the lethal-yellow mutant with known chlorophyll-deficient mutants; (2) inheritance, linkage, and allelism of the viable-yellow mutant with known chlorophyll-deficient mutants; (3) allelism of the lethal-yellow mutant with the viable-yellow mutant; and (4) male and female gamete transmission of the viable-yellow mutant trait. The viable-yellow mutant was allelic to T323, y20 y20 (Ames 2) Mdh1-n Mdh1-n (Ames 2) and was assigned genetic type collection number T361 and gene symbol y20 y20 (Ames 24) Mdh1-n Mdh1-n (Ames 22). The lethal-yellow mutant was allelic to T225H (Y18 y18) and was assigned genetic type collection number T362H and gene symbol Y18 y18 (Ames 2). T225H became Y18 y18 (Ames 1). The two chlorophyll-deficient mutants were not linked to each other. There was no significant difference in F(1) male or female gamete transmission of the viable-yellow mutant. However, many cross-combinations gave significant deviations from the expected 3 green plants:1 viable-yellow plant in the F(2) generation. The allelism of these two chlorophyll-deficient mutants with mutants T225H and T323, derived from putative transposable element systems, is intriguing. An explanation of this phenomenon awaits molecular experimentation.  相似文献   

12.
Rapid establishment of canopy coverage decreases soil evaporation relative to transpiration, improves water use efficiency and light interception, and increases soybean competitiveness against weeds. The objective of this study was to identify genomic loci associated with canopy coverage (CC). Canopy coverage was evaluated using a panel of 373 MG IV soybean genotypes that was grown in five environments. Digital image analysis was used to determine canopy coverage two times (CC1 and CC2) during vegetative development approximately 8 to 16 days apart for each environment. After filtration for quality control, 31,260 SNPs with a minor allele frequency (MAF)?≥?5% were used for association mapping with the FarmCPU model. Analysis identified significant SNP-canopy coverage associations including 36 for CC1 and 56 for CC2. Five SNPs for CC1 and 11 SNPs for CC2 were present in at least two environments. The significant SNP associations likely tagged 33 (CC1) and 50 (CC2) different quantitative trait loci (QTLs). Eleven putative loci were identified in which chromosomal regions associated were coincident for CC1 and CC2. Candidate genes identified using these significant SNPs included those with reported functions associated with growth, developmental, and light responses. Favorable alleles from significant SNPs may be an important resource for pyramiding genes to improve canopy coverage and for identifying parental genotypes for use in breeding programs.  相似文献   

13.

Key message

Complexity and inconsistencies in resistance mapping publications of soybean sudden death syndrome (SDS) result in interpretation difficulty. This review integrates SDS mapping literature and proposes a new nomenclature system for reproducible SDS resistance loci.

Abstract

Soybean resistance to sudden death syndrome (SDS) is composed of foliar resistance to phytotoxins and root resistance to pathogen invasion. There are more than 80 quantitative trait loci (QTL) and dozens of single nucleotide polymorphisms (SNPs) associated with soybean resistance to SDS. The validity of these QTL and SNPs is questionable because of the complexity in phenotyping methodologies, the disease synergism between SDS and soybean cyst nematode (SCN), the variability from the interactions between soybean genotypes and environments, and the inconsistencies in the QTL nomenclature. This review organizes SDS mapping results and proposes the Rfv (resistance to Fusarium virguliforme) nomenclature based on supporting criteria described in the text. Among ten reproducible loci receiving our Rfv nomenclature, Rfv18-01 is mostly supported by field studies and it co-localizes to the SCN resistance locus rhg1. The possibility that Rfv18-01 is a pleiotropic resistance locus and the concern about Rfv18-01 being confounded with Rhg1 is discussed. On the other hand, Rfv06-01, Rfv06-02, Rfv09-01, Rfv13-01, and Rfv16-01 were identified both by screening soybean leaves against phytotoxic culture filtrates and by evaluating SDS severity in fields. Future phenotyping using leaf- and root-specific resistance screening methodologies may improve the precision of SDS resistance, and advanced genetic studies may further clarify the interactions among soybean genotypes, F. virguliforme, SCN, and environments. The review provides a summary of the SDS resistance literature and proposes a framework for communicating SDS resistance loci for future research considering molecular interactions and genetic breeding for soybean SDS resistance.
  相似文献   

14.
Seed calcium content is an important quality attribute of specialty soybean [Glycine max (L.) Merr.] for soyfoods. However, analyzing seed for calcium content is time consuming and labor intensive. Knowing quantitative trait loci (QTL) for seed calcium will facilitate the development of elite cultivars with proper calcium content through marker-assisted selection (MAS). The objective of this study was to identify major QTL associated with calcium content in soybean seed. Calcium content was tested in 178 F(2:3) and 157 F(2:4) lines derived from the cross of SS-516 (low calcium) x Camp (high calcium). The F(2:3) lines were genotyped with 148 simple sequence repeat markers in a previous study on seed hardness, and the genotypic data were used in the QTL analysis of the current study. Four QTL designated as Ca1, Ca2, Ca3, and Ca4 on linkage groups (LGs) A2, I, and M were identified by both single-marker analysis and composite-interval mapping, and the QTL accounted for 10.7%, 16.3%, 14.9%, and 9.7% of calcium content variation, respectively. In addition, multiple-interval mapping analysis revealed a significant dominant-by-dominant interaction effect between Ca1 and Ca3, which accounted for 4.3% calcium content variation. These QTL will facilitate the implementation of MAS for calcium content in soybean-breeding programs.  相似文献   

15.
Summary The genetic relationships of three chlorophyll-deficient mutant peanuts, lutescens (lu), aureus (au), and virescent (v) were studied under field and greenhouse conditions. The F1 plants from crosses between these mutants produced phenotypically normal green. In F2, aureus X virescent segregated 675 normal green : 225 virescent : 45 aureus : 15 virescent aureus : 64 seedling lethal, and lutescens X virescent segregated 45 normal green : 15 virescent : 3 lutescens : 1 seedling lethal. (Lutescens peanuts were seedling lethal in the field.) As previously reported, the F2 of aureus X lutescens gave 225 normal green : 15 aureus :15 lutescens : 1 seedling lethal. The three chlorophyll-deficient factors (au, lu, and v) show independent inheritance. The recessive combinations from the parental types between aureus and virescent and between aureus and lutescens would produce plants with a combination of their respective parental characteristics, but the recessive combination between lutescens and virescent was nearly albino. The v-au and lu-au seedlings have a longer life span than the v-lu seedling has. The genotypes for the three mutants are tentatively identified as lutescens VV Au 1 Au 1 Au 2 Au 2 lu 1 lu 1 lu 2 lu 2 L 1 L 1 L 2 L 2, aureus VV au1au1 au2au2 Lu1Lu1 Lu2Lu2 L1L1 l2l2, and virescent vv Au1Au1 Au2Au2 lu1lu1 Lu2Lu2 l1l1 L2L2.  相似文献   

16.
17.
Drought stress adversely affects [Glycine max (L.) Merr] soybean at most developmental stages, which collectively results in yield reduction. Little information is available on relative contribution and chromosomal locations of quantitative trait loci (QTL) conditioning drought tolerance in soybean. A Japanese germplasm accession, PI 416937, was found to possess drought resistance. Under moisture-deficit conditions, PI 416937 wilted more slowly in the field than elite cultivars and has been used as a parent in breeding programs to improve soybean productivity. A recombinant inbred line (RIL) population was derived from a cross between PI 416937 and Benning, and the population was phenotyped for canopy wilting under rain-fed field conditions in five distinct environments to identify the QTL associated with the canopy-wilting trait. In a combined analysis over environments, seven QTL that explained 75?% of the variation in canopy-wilting trait were identified on different chromosomes, implying the complexity of this trait. Five QTL inherited their positive alleles from PI 416937. Surprisingly, the other two QTL inherited their positive alleles from Benning. These putative QTL were co-localized with other QTL previously identified as related to plant abiotic stresses in soybean, suggesting that canopy-wilting QTL may be associated with additional morpho-physiological traits in soybean. A locus on chromosome 12 (Gm12) from PI 416937 was detected in the combined analysis as well as in each individual environment, and explained 27?% of the variation in canopy-wilting. QTL identified in PI 416937 could provide an efficient means to augment field-oriented development of drought-tolerant soybean cultivars.  相似文献   

18.
In tobacco mutants which contain 1/8 to 1/30 of the normal chlorophyll content per leaf area the content of yellow pigments (carotenoids) is also diminished but less in proportion to the chlorophyll content. The pale yellow-green mutant grows and matures provided that light intensity and temperature make up for the chlorophyll deficiency. In most green plants and algae light saturation of photosynthesis is reached between 5000 and 12,000 ergs/sec.cm2. The mutants continue to give higher photosynthetic rates until the incident intensity reaches 50,000 ergs/sec.cm2. While often unable to compensate their respiration at intensities at which the normal green plant approaches saturation, the pale yellow-green leaves are able to provide the mutant plant with two to three times the absolute amount of carbon dioxide assimilation per hour and leaf area at 50,000 ergs/sec.cm2 and 20 degrees to 25 degrees C. These observations are valid for red light lambda > 600 m mu. In blue light lambda < 575 m mu (below saturation levels) the mutants separate into two classes, one in which absorption by some carotenoid enhances the photosynthetic rate and the other in which the absorbing pigments are inactive and therefore depress the rate strongly. The unusual kinetics of photosynthesis in these chlorophyll-deficient tobacco mutants is reflected in the structure of their chloroplasts which we found to be of a kind thus far not described for healthy, normally growing, higher plants.  相似文献   

19.
Pritchett-Ewing E 《Genetics》1981,98(2):409-415
A theoretical model is presented that extends the case of selection against homozygous recessives counterbalanced by mutation to a system of n loci. This extension allows analysis of the role of gene duplication in the evolution of new function. The aspect of retention of function for sufficiently long periods of time to allow for divergence vs. silencing of nonfunctional loci is discussed in relation to examples in salmonid and catastomid fishes and in the globin-like clusters.  相似文献   

20.

Key message

Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars.

Abstract

Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing ‘A95-684043’, a high-yielding maturity group (MG) II line resistant to SCN, with ‘LS94-3207’ and ‘LS98-0582’ of MG IV, resistant to both F. virguliforme and SCN. Two hundred F7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号