首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple copies of a given ribosomal RNA gene family undergo concerted evolution such that sequences of all gene copies are virtually identical within a species although they diverge normally between species. In eukaryotes, gene conversion and unequal crossing over are the proposed mechanisms for concerted evolution of tandemly repeated sequences, whereas dispersed genes are homogenized by gene conversion. However, the homogenization mechanisms for multiple-copy, normally dispersed, prokaryotic rRNA genes are not well understood. Here we compared the sequences of multiple paralogous rRNA genes within a genome in 12 prokaryotic organisms that have multiple copies of the rRNA genes. Within a genome, putative sequence conversion tracts were found throughout the entire length of each individual rRNA genes and their immediate flanks. Individual conversion events convert only a short sequence tract, and the conversion partners can be any paralogous genes within the genome. Interestingly, the genic sequences undergo much slower divergence than their flanking sequences. Moreover, genomic context and operon organization do not affect rRNA gene homogenization. Thus, gene conversion underlies concerted evolution of bacterial rRNA genes, which normally occurs within genic sequences, and homogenization of flanking regions may result from co-conversion with the genic sequence. Received: 31 March 2000 / Accepted: 15 June 2000  相似文献   

2.
Dinoflagellate chloroplast genes are unique in that each gene is on a separate minicircular chromosome. To understand the origin and evolution of this exceptional genomic organization we completely sequenced chloroplast psbA and 23S rRNA gene minicircles from four dinoflagellates: three closely related Heterocapsa species (H. pygmaea, H. rotundata, and H. niei) and the very distantly related Amphidinium carterae. We also completely sequenced a Protoceratium reticulatum minicircle with a 23S rRNA gene of novel structure. Comparison of these minicircles with those previously sequenced from H. triquetra and A. operculatum shows that in addition to the single gene all have noncoding regions of approximately a kilobase, which are likely to include a replication origin, promoter, and perhaps segregation sequences. The noncoding regions always have a high potential for folding into hairpins and loops. In all six dinoflagellate strains for which multiple minicircles are fully sequenced, parts of the noncoding regions, designated cores, are almost identical between the psbA and 23S rRNA minicircles, but the remainder is very different. There are two, three, or four cores per circle, sometimes highly related in sequence, but no sequence identity is detectable between cores of different species, even within one genus. This contrast between very high core conservation within a species, but none among species, indicates that cores are diverging relatively rapidly in a concerted manner. This is the first well-established case of concerted evolution of noncoding regions on numerous separate chromosomes. It differs from concerted evolution among tandemly repeated spacers between rRNA genes, and that of inverted repeats in plant chloroplast genomes, in involving only the noncoding DNA cores. We present two models for the origin of chloroplast gene minicircles in dinoflagellates from a typical ancestral multigenic chloroplast genome. Both involve substantial genomic reduction and gene transfer to the nucleus. One assumes differential gene deletion within a multicopy population of the resulting oligogenic circles. The other postulates active transposition of putative replicon origins and formation of minicircles by homologous recombination between them.  相似文献   

3.
Eukaryotic genes encoding the precursor of 18S, 5.8S and 25S ribosomal RNA (rRNA genes or rDNA) are virtually identical within a species, yet they evolve rapidly between species, a phenomenon known as concerted evolution. The mechanisms by which sequence homogenization and fixation of new rRNA gene variants occurs within a genome are not clear. In diploid Arabidopsis thaliana , approximately 1500 rRNA genes are tandemly arrayed at two nucleolus organizer regions, one on chromosome 2 ( NOR2 ), the other on chromosome 4 ( NOR4 ). This paper shows that NOR2 and NOR4 are similar in size, each spanning approximately 3.5–4.0 Mbp. Using two-dimensional mapping techniques involving a combination of pulsed-field and conventional gel electrophoresis, the distributions of four distinct rRNA gene variants at NOR2 and NOR4 have been determined. rRNA genes at NOR4 are homogeneous with respect to a Hin dIII site occurring once per gene. In contrast, fewer than 10% of the rRNA genes at NOR2 are Hin dIII-bearing variants. A single intergenic spacer length is found among rRNA genes at NOR2 but three classes of spacer length variants are present at NOR4 . The NOR4 variants are not intermingled with one another; instead, they are highly clustered over distances as large as 1.5 Mbp. These data suggest that in the concerted evolution of rRNA genes, homogenization is a consequence of local spreading of new rRNA gene variants.  相似文献   

4.
Generalized linear mixed model for segregation distortion analysis   总被引:1,自引:0,他引:1  

Background

Concerted evolution refers to the pattern in which copies of multigene families show high intraspecific sequence homogeneity but high interspecific sequence diversity. Sequence homogeneity of these copies depends on relative rates of mutation and recombination, including gene conversion and unequal crossing over, between misaligned copies. The internally repetitive intergenic spacer (IGS) is located between the genes for the 28S and 18S ribosomal RNAs. To identify patterns of recombination and/or homogenization within IGS repeat arrays, and to identify regions of the IGS that are under functional constraint, we analyzed 13 complete IGS sequences from 10 individuals representing four species in the Daphnia pulex complex.

Results

Gene conversion and unequal crossing over between misaligned IGS repeats generates variation in copy number between arrays, as has been observed in previous studies. Moreover, terminal repeats are rarely involved in these events. Despite the occurrence of recombination, orthologous repeats in different species are more similar to one another than are paralogous repeats within species that diverged less than 4 million years ago. Patterns consistent with concerted evolution of these repeats were observed between species that diverged 8-10 million years ago. Sequence homogeneity varies along the IGS; the most homogeneous regions are downstream of the 28S rRNA gene and in the region containing the core promoter. The inadvertent inclusion of interspecific hybrids in our analysis uncovered evidence of both inter- and intrachromosomal recombination in the nonrepetitive regions of the IGS.

Conclusions

Our analysis of variation in ribosomal IGS from Daphnia shows that levels of homogeneity within and between species result from the interaction between rates of recombination and selective constraint. Consequently, different regions of the IGS are on substantially different evolutionary trajectories.  相似文献   

5.
Tandemly repeated DNA families appear to undergo concerted evolution, such that repeat units within a species have a higher degree of sequence similarity than repeat units from even closely related species. While intraspecies homogenization of repeat units can be explained satisfactorily by repeated rounds of genetic exchange processes such as unequal crossing over and/or gene conversion, the parameters controlling these processes remain largely unknown. Alpha satellite DNA is a noncoding tandemly repeated DNA family found at the centromeres of all human and primate chromosomes. We have used sequence analysis to investigate the molecular basis of 13 variant alpha satellite repeat units, allowing comparison of multiple independent recombination events in closely related DNA sequences. The distribution of these events within the 171-bp monomer is nonrandom and clusters in a distinct 20- to 25-bp region, suggesting possible effects of primary sequence and/or chromatin structure. The position of these recombination events may be associated with the location within the higher-order repeat unit of the binding site for the centromere-specific protein CENP-B. These studies have implications for the molecular nature of genetic recombination, mechanisms of concerted evolution, and higher-order structure of centromeric heterochromatin.  相似文献   

6.
Histones are small basic nuclear proteins with critical structural and functional roles in eukaryotic genomes. The H1 multigene family constitutes a very interesting histone class gathering the greatest number of isoforms, with many different arrangements in the genome, including clustered and solitary genes, and showing replication-dependent (RD) or replication-independent (RI) expression patterns. The evolution of H1 histones has been classically explained by concerted evolution through a rapid process of interlocus recombination or gene conversion. Given such intriguing features, we have analyzed the long-term evolutionary pattern of the H1 multigene family through the evaluation of the relative importance of gene conversion, point mutation, and selection in generating and maintaining the different H1 subtypes. We have found the presence of an extensive silent nucleotide divergence, both within and between species, which is always significantly greater than the nonsilent variation, indicating that purifying selection is the major factor maintaining H1 protein homogeneity. The results obtained from phylogenetic analysis reveal that different H1 subtypes are no more closely related within than between species, as they cluster by type in the topologies, and that both RD and RI H1 variants follow the same evolutionary pattern. These findings suggest that H1 histones have not been subject to any significant effect of interlocus recombination or concerted evolution. However, the diversification of the H1 isoforms seems to be enhanced primarily by mutation and selection, where genes are subject to birth-and-death evolution with strong purifying selection at the protein level. This model is able to explain not only the generation and diversification of RD H1 isoforms but also the origin and long-term persistence of orphon RI H1 subtypes in the genome, something that is still unclear, assuming concerted evolution.  相似文献   

7.
P. Seperack  M. Slatkin    N. Arnheim 《Genetics》1988,119(4):943-949
Members of the rDNA multigene family within a species do not evolve independently, rather, they evolve together in a concerted fashion. Between species, however, each multigene family does evolve independently indicating that mechanisms exist which will amplify and fix new mutations both within populations and within species. In order to evaluate the possible mechanisms by which mutation, amplification and fixation occur we have determined the level of linkage disequilibrium between two polymorphic sites in human ribosomal genes in five racial groups and among individuals within two of these groups. The marked linkage disequilibrium we observe within individuals suggests that sister chromatid exchanges are much more important than homologous or nonhomologous recombination events in the concerted evolution of the rDNA family and further that recent models of molecular drive may not apply to the evolution of the rDNA multigene family.  相似文献   

8.
9.
The polyubiquitin gene, encoding tandemly repeated multiple ubiquitins, constitutes a uniquitin gene subfamily. It has been demonstrated that polyubiquitin genes are subject to concerted evolution; namely, the individual ubiquitin coding units contained within a polyubiquitin gene are more similar to one another than they are to the ubiquitin coding units in the orthologous gene from other species. However there has been no comprehensive study on the concerted evolution of polyubiquitin genes in a wide range of species, because the relationships (orthologous or paralogous) among multiple polyubiquitin genes from different species have not been extensively analyzed yet. In this report, we present the results of analyzing the nucleotide sequence of polyubiquitin genes of mammals, available in the DDBJ/EMBL/GenBank nucleotide sequence databases, in which we found that there are two groups of polyubiquitin genes in an orthologous relationship. Based on this result, we analyzed the concerted evolution of the polyubiquitin gene in various species and compared the frequency of concerted evolutionary events interspecifically by taking into consideration that the rate of synonymous substitution at the polyubiquitin gene locus may vary depending on species. We found that the concerted evolutionary events in polyubiquitin genes have been more frequent in rats and Chinese hamsters than those in humans, cows, and sheep. The guinea pig polyubiquitin gene was an intermediate example. The frequency of concerted evolution in the mouse gene was unexpectedly low compared to that of other rodent genes. Received: 18 January 2000 / Accepted: 26 April 2000  相似文献   

10.
Analyses of the nucleotide sequences of the duplicatedAmy genes in the eight species of theDrosophila melanogaster species subgroup have revealed concerted evolution of the coding regions and divergent evolution between the duplicated genes of the 5’-flanking regions. Homogenization between the duplicated genes in the coding region is maintained by frequent genetic exchange in various portions of the coding region. On the other hand, such genetic exchange seems to produce a large amount of DNA sequence variation and protein polymorphism at the two loci within a species. The puzzling observation that concerted evolution is restricted to the coding regions seems to be explained by not only adaptive evolution of the AMY proteins in speciation but also adaptive fixation of selectively advantageous mutations in the intergenic region that differentiate expression of the twoAmy genes. We review molecular work on theAmy gene system inDrosophila, including evidence from biochemical characterization of the AMY proteins and molecular characterization of the cis regulatory elements.  相似文献   

11.
Phylogeny reconstructions of the globin gene families have revealed that paralogous genes within species are often more similar to one another than they are to their orthologous counterparts in closely related species. This pattern has been previously attributed to mechanisms of concerted evolution such as interparalog gene conversion that homogenize sequence variation between tandemly duplicated genes and therefore create the appearance of recent common ancestry. Here we report a comparative genomic analysis of the alpha-globin gene family in mammals that reveal a surprisingly high rate of lineage-specific gene duplication and deletion via unequal crossing-over. Results of our analysis reveal that patterns of sequence similarity between paralogous alpha-like globin genes from the same species are only partly explained by concerted evolution between preexisting gene duplicates. In a number of cases, sequence similarity between paralogous sequences from the same species is attributable to recent ancestry between the products of de novo gene duplications. As a result of this surprisingly rapid rate of gene gain and loss, many mammals possess alpha-like globin genes that have no orthologous counterparts in closely related species. The resultant variation in gene copy number among species may represent an important source of regulatory variation that affects physiologically important aspects of blood oxygen transport and aerobic energy metabolism.  相似文献   

12.
Several plant mitochondrial genomes contain repeated sequences that are postulated to be sites of homologous intragenomic recombination (1-3). In this report, we have used filter hybridizations to investigate sequence relationships between the cloned mitochondrial DNA (mtDNA) recombination repeats from turnip, spinach and maize and total mtDNA isolated from thirteen species of angiosperms. We find that strong sequence homologies exist between the spinach and turnip recombination repeats and essentially all other mitochondrial genomes tested, whereas a major maize recombination repeat does not hybridize to any other mtDNA. The sequences homologous to the turnip repeat do not appear to function in recombination in any other genome, whereas the spinach repeat hybridizes to reiterated sequences within the mitochondrial genomes of wheat and two species of pokeweed that do appear to be sites of recombination. Thus, although intragenomic recombination is a widespread phenomenon in plant mitochondria, it appears that different sequences either serve as substrates for this function in different species, or else surround a relatively short common recombination site which does not cross-hybridize under our experimental conditions. Identified gene sequences from maize mtDNA were used in heterologous hybridizations to show that the repeated sequences implicated in recombination in turnip and spinach/pokeweed/wheat mitochondria include, or are closely linked to genes for subunit II of cytochrome c oxidase and 26S rRNA, respectively. Together with previous studies indicating that the 18S rRNA gene in wheat mtDNA is contained within a recombination repeat (3), these results imply an unexpectedly frequent association between recombination repeats and plant mitochondrial genes.  相似文献   

13.
The 5S rDNA is organized in the genome as tandemly repeated copies of a structural unit composed of a coding sequence plus a nontranscribed spacer (NTS). The coding region is highly conserved in the evolution, whereas the NTS vary in both length and sequence. It has been proposed that 5S rRNA genes are members of a gene family that have arisen through concerted evolution. In this study, we describe the molecular organization and evolution of the 5S rDNA in the genera Lepidorhombus and Scophthalmus (Scophthalmidae) and compared it with already known 5S rDNA of the very different genera Merluccius (Merluccidae) and Salmo (Salmoninae), to identify common structural elements or patterns for understanding 5S rDNA evolution in fish. High intra- and interspecific diversity within the 5S rDNA family in all the genera can be explained by a combination of duplications, deletions, and transposition events. Sequence blocks with high similarity in all the 5S rDNA members across species were identified for the four studied genera, with evidences of intense gene conversion within noncoding regions. We propose a model to explain the evolution of the 5S rDNA, in which the evolutionary units are blocks of nucleotides rather than the entire sequences or single nucleotides. This model implies a "two-speed" evolution: slow within blocks (homogenized by recombination) and fast within the gene family (diversified by duplications and deletions).  相似文献   

14.
Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.  相似文献   

15.
Morphological features of the siliceous cell wall traditionally have been used to diagnose and classify species of diatoms, though an increasing number of studies distinguish new species, in part, by phylogenetic analysis of rDNA sequences. Intragenomic sequence variation is common among the hundreds to thousands of rDNA cistrons present within a genome, and this variation has strong potential to obscure species boundaries based on rDNA sequences. We screened six Skeletonema culture strains for intragenomic nucleotide polymorphisms in the small subunit (SSU) rDNA gene and found that all strains had polymorphic sites, with proportions ranging from 0.57% to 1.81%. In all cases, transitions accounted for more than 70% of nucleotide differences at polymorphic sites. Polymorphic sites were split nearly evenly in the SSU rRNA molecule between the base‐paired regions of helices (52%) and the unpaired regions of loops and bulges (48%). Phylogenetic analysis showed that SSU rDNA genotypes were monophyletic for two of the six culture strains examined. Genotypes from the other four culture strains either showed little or no phylogenetic structure compared with genotypes of other conspecific culture strains or had phylogenetic structure that was incongruent with existing species boundaries. Moderate to strong support for monophyly was recovered for four of the seven species included in the analysis. Phylogenetic results combined with the low sequence divergence of SSU rDNA genotypes within species suggest that concerted evolution has not proceeded to completion in these species and/or that the rate at which variation is being generated exceeds the rate at which concerted evolution is expunging variation.  相似文献   

16.
I Cross  L Rebordinos 《Génome》2005,48(6):1116-1119
The 5S rRNA genes from 2 species of the Ostreidae family, Crassostrea angulata and Crassostrea gigas, were molecularly characterized. The genes were amplified, cloned, and sequenced. The results revealed a 5S rDNA tandem array with a nucleotide sequence in an inverted position within the nontranscribed spacer region that corresponded to the U2 small nuclear RNA (snRNA) gene. The sequence analysis indicated that both genes could be functionally active. The presence of the microsatellite (CT)n x (GA)n at the 3' end of both genes and the possible involvement of concerted evolution are discussed.  相似文献   

17.
To understand the pattern of nucleotide sequence variation among bacteria that frequently exchange chromosomal genes, we analyzed sequences of the recA, argF, and rho genes, as well as part of the small-subunit (16S) rRNA gene, from about 50 isolates of human commensal Neisseria species and the pathogenic N. meningitidis and N. gonorrhoeae. Almost all isolates of these species could be assigned to five phylogenetic groups that are found for all genes examined and generally are supported by high bootstrap values. In contrast, the phylogenetic relationships among groups varied according to the gene analyzed with notable incongruences involving N. cinerea and N. lactamica. Further analysis using split decomposition showed that for each gene, including 16S rRNA, the patterns of sequence divergence within N. meningitidis and closely related species were inconsistent with a bifurcating treelike phylogeny and better represented by an interconnected network. These data indicate that the human commensal Neisseria species can be separated into discrete groups of related species but that the relationships both within and among these groups, including those reconstructed using 16S rRNA, have been distorted by interspecies recombination events.  相似文献   

18.
19.
M Nenoi  K Mita  S Ichimura  A Kawano 《Genetics》1998,148(2):867-876
The polyubiquitin gene is an evolutionarily conserved eukaryotic gene, encoding tandemly repeated multiple ubiquitins, and is considered to be subject to concerted evolution. Here, we present the nucleotide sequences of new alleles of the polyubiquitin gene UbC in humans and CHUB2 in Chinese hamster, which encode a different number of ubiquitin units from those of previously reported genes. And we analyze the concerted evolution of these genes on the basis of their orthologous relationship. That the mean of the synonymous sequence difference Ks which is defined as the number of synonymous substitution relative to the total number of synonymous sites, within the UbC and CHUB2 genes (0.192 +/- 0.096) is significantly less than Ks between these genes (0.602 +/- 0.057) provides direct evidence for concerted evolution. Moreover, it also appears that concerted evolutionary events have been much more frequent in CHUB2 than in UbC, because Ks within CHUB2 (0.022 +/- 0.018) is much less than that within UbC (0.362 +/- 0.192). By a numerical simulation, postulating that the major mechanism of concerted evolution in polyubiquitin genes is unequal crossing over, we estimated the frequency of concerted evolutionary events of CHUB2 at 3.3 x 10(-5) per year and that of UbC at no more than 5.0 x 10(-7) per year.  相似文献   

20.
A cluster of four trypsin genes has previously been localized to cytological position 47D-F of the Drosophila melanogaster genome. One of these genes had been sequenced, and the presence of the other three genes was identified by cross-hybridization. Here, we present the DNA sequence of the entire genomic region encoding these four trypsin genes. In addition to the four previously inferred genes, we have identified a fifth trypsin-coding sequence located within this gene cluster. This new gene shows a high degree of sequence divergence (more than 30%) from the other four genes, although it retains all of the functional motifs that are characteristic of trypsin-coding sequences. In order to trace the molecular evolution of this gene cluster, we isolated and sequenced the homologous 7-kb region from the closely related species Drosophila erecta. A comparison of the DNA sequences between the two species provides strong evidence for the concerted evolution of some members of this gene family. Two genes within the cluster are evolving in concert, while a third gene appears to be evolving independently. The remaining two genes show an intermediate pattern of evolution. We propose a simple model, involving chromosome looping and gene conversion, to explain the relatively complex patterns of molecular evolution within this gene cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号