首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic evidence suggests that indole-3-butyric acid (IBA) is converted to the active auxin indole-3-acetic acid (IAA) by removal of two side-chain methylene units in a process similar to fatty acid beta-oxidation. Previous studies implicate peroxisomes as the site of IBA metabolism, although the enzymes that act in this process are still being identified. Here, we describe two IBA-response mutants, ibr1 and ibr10. Like the previously described ibr3 mutant, which disrupts a putative peroxisomal acyl-CoA oxidase/dehydrogenase, ibr1 and ibr10 display normal IAA responses and defective IBA responses. These defects include reduced root elongation inhibition, decreased lateral root initiation, and reduced IBA-responsive gene expression. However, peroxisomal energy-generating pathways necessary during early seedling development are unaffected in the mutants. Positional cloning of the genes responsible for the mutant defects reveals that IBR1 encodes a member of the short-chain dehydrogenase/reductase family and that IBR10 resembles enoyl-CoA hydratases/isomerases. Both enzymes contain C-terminal peroxisomal-targeting signals, consistent with IBA metabolism occurring in peroxisomes. We present a model in which IBR3, IBR10, and IBR1 may act sequentially in peroxisomal IBA beta-oxidation to IAA.  相似文献   

2.
Poupart J  Waddell CS 《Plant physiology》2000,124(4):1739-1751
The presence of indole-3-butyric acid (IBA) as an endogenous auxin in Arabidopsis has been recently demonstrated. However, the in vivo role of IBA remains to be elucidated. We present the characterization of a semi-dominant mutant that is affected in its response to IBA, but shows a wild-type response to indole-3-acetic acid (IAA), the predominant and most studied form of auxin. We have named this mutant rib1 for resistant to IBA. Root elongation assays show that rib1 is specifically resistant to IBA, to the synthetic auxin 2,4-dichlorophenoxyacetic acid, and to auxin transport inhibitors. rib1 does not display increased resistance to IAA, to the synthetic auxin naphthalene acetic acid, or to other classes of plant hormones. rib1 individuals also have other root specific phenotypes including a shortened primary root, an increased number of lateral roots, and a more variable response than wild type to a change in gravitational vector. Adult rib1 plants are morphologically indistinguishable from wild-type plants. These phenotypes suggest that rib1 alters IBA activity in the root, thereby affecting root development and response to environmental stimuli. We propose models in which RIB1 has a function in either IBA transport or response. Our experiments also suggest that IBA does not use the same mechanism to exit cells as does IAA and we propose a model for IBA transport.  相似文献   

3.
In plants and other eukaryotes, long-chain acyl-CoAs are assumed to be imported into peroxisomes for beta-oxidation by an ATP binding cassette (ABC) transporter. However, two genes in Arabidopsis thaliana, LACS6 and LACS7, encode peroxisomal long-chain acyl-CoA synthetase (LACS) isozymes. To investigate the biochemical and biological roles of peroxisomal LACS, we identified T-DNA knockout mutants for both genes. The single-mutant lines, lacs6-1 and lacs7-1, were indistinguishable from the wild type in germination, growth, and reproductive development. By contrast, the lacs6-1 lacs7-1 double mutant was specifically defective in seed lipid mobilization and required exogenous sucrose for seedling establishment. This phenotype is similar to the A. thaliana pxa1 mutants deficient in the peroxisomal ABC transporter and other mutants deficient in beta-oxidation. Our results demonstrate that peroxisomal LACS activity and the PXA1 transporter are essential for early seedling growth. The peroxisomal LACS activity would be necessary if the PXA1 transporter delivered unesterified fatty acids into the peroxisomal matrix. Alternatively, PXA1 and LACS6/LACS7 may act in parallel pathways that are both required to ensure adequate delivery of acyl-CoA substrates for beta-oxidation and successful seedling establishment.  相似文献   

4.
Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, development, and response to exogenous auxin consistent with an important physiological role for IBA transport. Both hypocotyl and root IBA basipetal transport are decreased in rib1 and root acropetal IBA transport is increased. While indole-3-acetic acid (IAA) transport levels are not different in rib1 compared to wild type, root acropetal IAA transport is insensitive to the IAA efflux inhibitor naphthylphthalamic acid in rib1, as is the dependent physiological process of lateral root formation. These observed changes in IBA transport are accompanied by altered rib1 phenotypes. Previously, rib1 roots were shown to be less sensitive to growth inhibition by IBA, but to have a wild-type response to IAA in root elongation. rib1 is also less sensitive to IBA in stimulation of lateral root formation and in hypocotyl elongation under most, but not all, light and sucrose conditions. rib1 has wild-type responses to IAA, except under one set of conditions, low light and 1.5% sucrose, in which both hypocotyl elongation and lateral root formation show altered IAA response. Taken together, our results support a model in which endogenous IBA influences wild-type seedling morphology. Modifications in IBA distribution in seedlings affect hypocotyl and root elongation, as well as lateral root formation.  相似文献   

5.
Indole-3-butyric acid (IBA) is an endogenous auxin used to enhance rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display enhanced root elongation on inhibitory IBA concentrations but maintain wild-type responses to indole-3-acetic acid, the principle active auxin. A subset of ibr mutants remains sensitive to the stimulatory effects of IBA on lateral root initiation. These mutants are not sucrose dependent during early seedling development, indicating that peroxisomal beta-oxidation of seed storage fatty acids is occurring. We used positional cloning to determine that one mutant is defective in ACX1 and two are defective in ACX3, two of the six Arabidopsis fatty acyl-CoA oxidase (ACX) genes. Characterization of T-DNA insertion mutants defective in the other ACX genes revealed reduced IBA responses in a third gene, ACX4. Activity assays demonstrated that mutants defective in ACX1, ACX3, or ACX4 have reduced fatty acyl-CoA oxidase activity on specific substrates. Moreover, acx1 acx2 double mutants display enhanced IBA resistance and are sucrose dependent during seedling development, whereas acx1 acx3 and acx1 acx5 double mutants display enhanced IBA resistance but remain sucrose independent. The inability of ACX1, ACX3, and ACX4 to fully compensate for one another in IBA-mediated root elongation inhibition and the ability of ACX2 and ACX5 to contribute to IBA response suggests that IBA-response defects in acx mutants may reflect indirect blocks in peroxisomal metabolism and IBA beta-oxidation, rather than direct enzymatic activity of ACX isozymes on IBA-CoA.  相似文献   

6.
Indole-3-butyric acid (IBA) is an endogenous auxin that acts in Arabidopsis primarily via its conversion to the principal auxin indole-3-acetic acid (IAA). Genetic and biochemical evidence indicates that this conversion is similar to peroxisomal fatty acid β-oxidation, but the specific enzymes catalyzing IBA β-oxidation have not been identified. We identified an IBA-response mutant (ibr3) with decreased responses to the inhibitory effects of IBA on root elongation or the stimulatory effects of IBA on lateral root formation. However, ibr3 mutants respond normally to other forms of auxin, including IAA. The mutant seedlings germinate and develop normally, even in the absence of sucrose, suggesting that fatty acid β-oxidation is unaffected. Additionally, double mutants between ibr3 and acx3, which is defective in an acyl-CoA oxidase acting in fatty acid β-oxidation, have enhanced IBA resistance, consistent with a distinct role for IBR3. Positional cloning revealed that IBR3 encodes a putative acyl-CoA dehydrogenase with a consensus peroxisomal targeting signal. Based on the singular defect of this mutant in responding to IBA, we propose that IBR3 may act directly in the oxidation of IBA to IAA. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

7.
Auxin influx carriers are involved in auxin transport and plant development. Here we show that the mutant of rice (Oryza sativa L. ssp. indica cv IR8) arm2 is defective in the uptake of the naturally occurring auxin indole-3-butyric acid (IBA). The acropetal and basipetal transport of IBA is reduced in arm2 roots compared with wild type. In contrast, arm2 roots are normal with respect to uptake and transport of indole-3-acetic acid (IAA). Furthermore, arm2 roots are resistant to IBA but respond normally to IAA. The mutant analysis of arm2 indicates the presence of an influx carrier system for IBA in rice roots.  相似文献   

8.
Zolman BK  Yoder A  Bartel B 《Genetics》2000,156(3):1323-1337
Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA.  相似文献   

9.
Indole-3-butyric acid (IBA) is an endogenous storage auxin important for maintaining appropriate indole-3-acetic acid (IAA) levels, thereby influencingprimary root elongation and lateral root development. IBA is metabolized into free IAA in peroxisomes in a multistep process similar to fatty acid β-oxidation. We identified LONG CHAIN ACYL-COA SYNTHETASE 4 (LACS4) in a screen for enhanced IBA resistance in primary root elongation in Arabidopsis thaliana. LACSs activate substrates by catalyzing the addition of CoA, the necessary first step for fatty acids to participate in β-oxidation or other metabolic pathways. Here, we describe the novel role of LACS4 in hormone metabolism and postulate that LACS4 catalyzes the addition of CoA onto IBA, the first step in its β-oxidation. lacs4 is resistant to the effects of IBA in primary root elongation and dark-grown hypocotyl elongation, and has reduced lateral root density. lacs6 also is resistant to IBA, although both lacs4 and lacs6 remain sensitive to IAA in primary root elongation, demonstrating that auxin responses are intact. LACS4 has in vitro enzymatic activity on IBA, but not IAA or IAA conjugates, and disruption of LACS4 activity reduces the amount of IBA-derived IAA in planta. We conclude that, in addition to activity on fatty acids, LACS4 and LACS6 also catalyze the addition of CoA onto IBA, the first step in IBA metabolism and a necessary step in generating IBA-derived IAA.

An enhancer mutant revealed an acyl-CoA synthetase that catalyzes CoA addition to indole-3-butryic acid, required for the β-oxidation steps necessary to generate indole-3-butryic acid-derived IAA.  相似文献   

10.
Auxin controls numerous plant growth processes by directing cell division and expansion. Auxin-response mutants, including iba response5 (ibr5), exhibit a long root and decreased lateral root production in response to exogenous auxins. ibr5 also displays resistance to the phytohormone abscisic acid (ABA). We found that the sar3 suppressor of auxin resistant1 (axr1) mutant does not suppress ibr5 auxin-response defects, suggesting that screening for ibr5 suppressors might reveal new components important for phytohormone responsiveness. We identified two classes of Arabidopsis thaliana mutants that suppressed ibr5 resistance to indole-3-butyric acid (IBA): those with restored responses to both the auxin precursor IBA and the active auxin indole-3-acetic acid (IAA) and those with restored response to IBA but not IAA. Restored IAA sensitivity was accompanied by restored ABA responsiveness, whereas suppressors that remained IAA resistant also remained ABA resistant. Some suppressors restored sensitivity to both natural and synthetic auxins; others restored responsiveness only to auxin precursors. We used positional information to determine that one ibr5 suppressor carried a mutation in PLEIOTROPIC DRUG RESISTANCE9 (PDR9/ABCG37/At3g53480), which encodes an ATP-binding cassette transporter previously implicated in cellular efflux of the synthetic auxin 2,4-dichlorophenoxyacetic acid.  相似文献   

11.
Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal β-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels.  相似文献   

12.
The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrates.  相似文献   

13.
Plants have developed numerous mechanisms to store hormones in inactive but readily available states, enabling rapid responses to environmental changes. The phytohormone auxin has a number of storage precursors, including indole-3-butyric acid (IBA), which is apparently shortened to active indole-3-acetic acid (IAA) in peroxisomes by a process similar to fatty acid β-oxidation. Whereas metabolism of auxin precursors is beginning to be understood, the biological significance of the various precursors is virtually unknown. We identified an Arabidopsis thaliana mutant that specifically restores IBA, but not IAA, responsiveness to auxin signaling mutants. This mutant is defective in PLEIOTROPIC DRUG RESISTANCE8 (PDR8)/PENETRATION3/ABCG36, a plasma membrane–localized ATP binding cassette transporter that has established roles in pathogen responses and cadmium transport. We found that pdr8 mutants display defects in efflux of the auxin precursor IBA and developmental defects in root hair and cotyledon expansion that reveal previously unknown roles for IBA-derived IAA in plant growth and development. Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis.  相似文献   

14.
Fatty acid β-oxidation is essential for seedling establishment of oilseed plants, but little is known about its role in leaf metabolism of adult plants. Arabidopsis thaliana plants with loss-of-function mutations in the peroxisomal ABC-transporter1 (PXA1) or the core β-oxidation enzyme keto-acyl-thiolase 2 (KAT2) have impaired peroxisomal β-oxidation. pxa1 and kat2 plants developed severe leaf necrosis, bleached rapidly when returned to light, and died after extended dark treatment, whereas the wild type was unaffected. Dark-treated pxa1 plants showed a decrease in photosystem II efficiency early on and accumulation of free fatty acids, mostly α-linolenic acid [18:3(n-3)] and pheophorbide a, a phototoxic chlorophyll catabolite causing the rapid bleaching. Isolated wild-type and pxa1 chloroplasts challenged with comparable α-linolenic acid concentrations both showed an 80% reduction in photosynthetic electron transport, whereas intact pxa1 plants were more susceptible to the toxic effects of α-linolenic acid than the wild type. Furthermore, starch-free mutants with impaired PXA1 function showed the phenotype more quickly, indicating a link between energy metabolism and β-oxidation. We conclude that the accumulation of free polyunsaturated fatty acids causes membrane damage in pxa1 and kat2 plants and propose a model in which fatty acid respiration via peroxisomal β-oxidation plays a major role in dark-treated plants after depletion of starch reserves.  相似文献   

15.
The Arabidopsis chy1 mutant is resistant to indole-3-butyric acid, a naturally occurring form of the plant hormone auxin. Because the mutant also has defects in peroxisomal beta-oxidation, this resistance presumably results from a reduced conversion of indole-3-butyric acid to indole-3-acetic acid. We have cloned CHY1, which appears to encode a peroxisomal protein 43% identical to a mammalian valine catabolic enzyme that hydrolyzes beta-hydroxyisobutyryl-CoA. We demonstrated that a human beta-hydroxyisobutyryl-CoA hydrolase functionally complements chy1 when redirected from the mitochondria to the peroxisomes. We expressed CHY1 as a glutathione S-transferase (GST) fusion protein and demonstrated that purified GST-CHY1 hydrolyzes beta-hydroxyisobutyryl-CoA. Mutagenesis studies showed that a glutamate that is catalytically essential in homologous enoyl-CoA hydratases was also essential in CHY1. Mutating a residue that is differentially conserved between hydrolases and hydratases established that this position is relevant to the catalytic distinction between the enzyme classes. It is likely that CHY1 acts in peroxisomal valine catabolism and that accumulation of a toxic intermediate, methacrylyl-CoA, causes the altered beta-oxidation phenotypes of the chy1 mutant. Our results support the hypothesis that the energy-intensive sequence unique to valine catabolism, where an intermediate CoA ester is hydrolyzed and a new CoA ester is formed two steps later, avoids methacrylyl-CoA accumulation.  相似文献   

16.
The plant hormone auxin has been shown to be involved in lateral root development and application of auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), increases the number of lateral roots in several plants. We found that the effects of two auxins on lateral root development in the indica rice (Oryza sativa L. cv. IR8) were totally different from each other depending on the application method. When the roots were incubated with an auxin solution, IAA inhibited lateral root development, while IBA was stimulatory. In contrast, when auxin was applied to the shoot, IAA promoted lateral root formation, while IBA did not. The transport of [3H]IAA from shoot to root occurred efficiently (% transported compared to supplied) but that of [3H]IBA did not, which is consistent with the stimulatory effect of IAA on lateral root production when applied to the shoot. The auxin action of IBA has been suggested to be due to its conversion to IAA. However, in rice IAA competitively inhibited the stimulatory effect of IBA on lateral root formation when they were applied to the incubation solution, suggesting that the stimulatory effect of IBA on lateral root development is not through its conversion to IAA.  相似文献   

17.
Mitochondrial aldehyde dehydrogenase ALD5 of Saccharomyces cerevisiae is involved in the biosynthesis of mitochondrial electron transport chain, and the ald5 mutant is incompetent for respiration. With use of the mutant, we examined the detoxication of H2O2 generation by fatty acid beta-oxidation in peroxisome. The ald5 mutant (AKD321), as well as the 746 rho0 mutant, was more resistant to H2O2 stress than the wild type. However, overexpression of the MDH3 gene that was involved in the reoxidation of NADH during fatty acid beta-oxidation caused a decrease in cell viability of AKD321 to H2O2 stress, while the 746 rho0 mutant had no such effect. Intracellular H2O2 concentration increased approximately fourfold in MDH3 overexpressing ald5 strain (MD3-AKD321), compared with AKD321. The peroxisomal catalase activity of MD3-AKD321 decreased by 83% to that of AKD321. And also, the overexpression of MDH3 had only a weak effect in MDH3 overexpressing 746 rho0 strain, decreasing by 14% to that of 746 rho0 mutant. The increased palmitoyl CoA oxidation by overexpression of MDH3 gene was the same in both strains. Under conditions of MDH3 overexpression, peroxisomal catalase (CTA1) appears to be a limiting factor to oxidative stress. These observations point to an important, as yet unidentified, role of mitochondrial aldehyde dehydrogenase (ALD5) to endogeneous oxidative stress in peroxisome.  相似文献   

18.
Plants can regulate levels of the auxin indole-3-acetic acid (IAA) by conjugation to amino acids or sugars, and subsequent hydrolysis of these conjugates to release active IAA. These less active auxin conjugates constitute the majority of IAA in plants. We isolated the Arabidopsis ilr2-1 mutant as a recessive IAA-leucine resistant mutant that retains wild-type sensitivity to free IAA. ilr2-1 is also defective in lateral root formation and primary root elongation. In addition, ilr2-1 is resistant to manganese- and cobalt-mediated inhibition of root elongation, and microsomal preparations from the ilr2-1 mutant exhibit enhanced ATP-dependent manganese transport. We used a map-based positional approach to clone the ILR2 gene, which encodes a novel protein with no predicted membrane-spanning domains that is polymorphic among Arabidopsis accessions. Our results demonstrate that ILR2 modulates a metal transporter, providing a novel link between auxin conjugate metabolism and metal homeostasis.  相似文献   

19.
The metabolism of long chain unsaturated fatty acids was studied in cultured fibroblasts from patients with X-linked adrenoleukodystrophy (ALD) and with neonatal ALD. By using [14-14C] erucic acid (22:1(n-9)) as substrate it was shown that the peroxisomal beta-oxidation, measured as chain shortening, was impaired in cells from patients with neonatal ALD. The beta-oxidation of adrenic acid (22:4(n-6)), measured as acid-soluble products, was also reduced in the neonatal ALD cells. The peroxisomal beta-oxidation of [14-14C]erucic acid (22:1(n-9)) and [2-14C]adrenic acid (22:4(n-6)) was normal in cells from X-ALD patients. The beta-oxidation, esterification and chain elongation of [1-14C]arachidonic acid (20:4(n-6)) and [1-14C]eicosapentaenoic acid (20:5(n-3)) was normal in both X-linked ALD and in neonatal ALD. Previous studies suggest that the activation of very long chain fatty acids by a lignoceryl (24:0)-CoA ligase is deficient in X-linked ALD, while the peroxisomal beta-oxidation enzymes are deficient in neonatal ALD. The present results suggest that the peroxisomal very long-chain acyl-CoA ligase is not required for activation of unsaturated C20 and C22 fatty acids and that these fatty acids can be efficiently activated by the long chain acyl-(palmityl)-CoA ligase.  相似文献   

20.
Arabidopsis root architecture is regulated by shoot-derived signals such as nitrate and auxin. We report that mutations in the putative auxin influx carrier AUX1 modify root architecture as a result of the disruption in hormone transport between indole-3-acetic acid (IAA) source and sink tissues. Gas chromatography-selected reaction monitoring-mass spectrometry measurements revealed that the aux1 mutant exhibited altered IAA distribution in young leaf and root tissues, the major IAA source and sink organs, respectively, in the developing seedling. Expression studies using the auxin-inducible reporter IAA2::uidA revealed that AUX1 facilitates IAA loading into the leaf vascular transport system. AUX1 also facilitates IAA unloading in the primary root apex and developing lateral root primordium. Exogenous application of the synthetic auxin 1-naphthylacetic acid is able to rescue the aux1 lateral root phenotype, implying that root auxin levels are suboptimal for lateral root primordium initiation in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号