首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cultures of rat granulosa cells, luteinizing hormone-releasing hormone (LHRH) increases 32P incorporation into both phosphatidylinositol (PI) and phosphatidic acid (PA). After 20 min, the level of radioactivity was three- to four-fold (p less than 0.01) above control in the PI and PA fractions, respectively. The stimulatory effect of LHRH on 32P incorporation was limited to PI and PA. Similar to the effects of LHRH, a rapid and marked increase of 32P incorporation into both PI and PA is observed upon addition of prostaglandin F2 alpha (PGF2 alpha) (10(-5)M) to rat granulosa cells. Incorporation of radioactivity into PA was already increased (p less than 0.05) by 2 min following PGF2 alpha addition, while the increase in 32P-labeled PI became significant (p less than 0.01) by 5 min. In contrast to PGF2 alpha, the labeling of PI and PA following the addition of PGE2 (10(-5)M) was not significantly different from control levels during the entire 10 min of incubation. The sensitivity of the increased PA-PI labeling induced by LHRH and PGF2 alpha is compared in another experiment. After 20 min incubation 10(-6)M LHRH increased PI and PA labeling by six- and four-fold, respectively. Although the effect of PGF2 alpha is less than that of LHRH, 10(-5)M PGF2 alpha significantly (p less than 0.01) increased PI and PA labeling by three- and two-fold, respectively. By contrast, 10(-6)M PGE2 failed to affect 32P incorporation into the various phospholipid fractions, but a small enhancement (p less than 0.05) of PI and PA labeling was observed only at 10(-5)M PGE2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Both gonadotropin-releasing hormone (GnRH) and prostaglandin F2 alpha (PGF2 alpha) can inhibit cAMP and progesterone production in the corpus luteum; however, their mechanism of action is not known. GnRH or PGF2 alpha causes a rapid and marked increase of labelling of phosphatidylinositol (PI) and phosphatidic acid (PA) in rat luteal cells in culture. The incorporation of radioactivity is increased as early as 2 and 5 min into PA and PI, respectively. The labelling of the other phospholipids is not affected. GnRH and PGF2 alpha exert their stimulatory effects on PA-PI turnover at a mean effective dose value of ca. 15 and 100 nM, respectively. Their effects appeared to be additive when both agents were present in the same incubations. Interestingly, addition of the calcium ionophore A23187 also causes a dramatic increase of PA-PI turnover in luteal cells. By contrast, human chorionic gonadotropin and isoproterenol, agents that stimulate cAMP and progesterone production in luteal cells, as well as PGE2 (1 microM), all fail to alter phospholipid labelling; dibutyryl or 8-bromo-cAMP (2-5 mM) actually attentuates the GnRH or PGF2 alpha effect on PI and PA. A very similar PA-PI response to GnRH and PGF2 alpha has also been observed using rat granulosa cells in culture. It seems that following their binding to membrane receptors, GnRH and PGF2 alpha may share a common mechanism in the ovarian cell, possibly involving the stimulation of PA-PI metabolism.  相似文献   

3.
Ca2+ was required for carbachol-induced decreases in phosphatidylinositol (PI) and increases in phosphatidic acid (PA) concentrations during incubation of rat submaxillary gland fragments, but was not required for increases in [32P]Pi incorporation into these phospholipids. Like carbachol, A23187 provoked a Ca2+-dependent decrease in PI mass. These results suggest concomitant operation of two separate mechanisms for stimulating PI hydrolysis and 32P labeling of PA and PI during carbachol action: one mechanism is not dependent on external Ca2+ and is manifested by rapid labeling in a relatively small PA-PI pool; the other mechanism is dependent on Ca2+ and involves a large PA-PI pool which appears to have a relatively slow renewal (labeling) rate.  相似文献   

4.
In cultured rat anterior pituitary cells, the agonist [Asu1,6, Arg8]vasopressin (AVP-A) increased by 1.5-fold 32Pi incorporation into phosphatidic acid (PA), as early as 15 s after its addition. Increased phosphatidylinositol (PI) labeling became significant 4 min after AVP-A addition. Dose-response measurements with AVP-A showed ED50 values of 76 and 62 nM for PA and PI labeling, respectively. Peptide corticotropin-releasing factor (CRF) (0.1 microM) did not affect the stimulatory effect of AVP-A on PA and PI labeling. These data suggest that stimulation of PI metabolism in corticotrophs may be one of the early events involved in the stimulation of ACTH release induced by vasopressin.  相似文献   

5.
Summary Exposure of synaptosomes to microwave radiation at a power density of 10 mW/sq cm or more produced stimulation of the32Pi-incorporation into phosphoinositides. The extent of32Pi incorporation was found to be much more pronounced in phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2) as compared to phosphatidylinositol (PI) and phosphatidic acid (PA). Other lipids were also found to incorporate32Pi but no significant changes in their labeling were seen after exposure to microwave radiation. Inclusion of 10 mM lithium in the medium reduced the basal labeling of PIP2, PIP and PI and increased PA labeling. Li+ also inhibited the microwave stimulated PIP2, PIP and PI labeling but had no effect on PA labeling. Calcium ionophore, A23187, inhibited the basal and microwave stimulated32Pi labeling of PIP and PIP2, stimulated basal labeling of PA and PI and had no effect on microwave stimulated PA and PI labeling. Calcium chelator, EGTA, on the other hand, had no effect on basal labeling of PA and PI, stimulated basal PIP and PIP2 labeling but did not alter microwave stimulated labeling of these lipids. Exposure of synaptosomes to microwave radiation did not alter the chemical concentration of phosphoinositides indicating that the turnover of these lipids was altered. These results suggest that low frequency microwave radiation alter the metabolism of inositol phospholipids by enhancing their turnover and thus may affect the transmembrane signalling in the nerve endings.  相似文献   

6.
The accumulation of inositol phosphates (IPs) in response to prostaglandins (PGs) was studied in NG108-15 cells preincubated with myo-[3H]inositol. As a positive control, bradykinin caused accumulation of IPs transiently at an early phase (within 1 min) and continuously during a late phase (15-60 min) of incubation in the cells. PGD2 and PGF2 alpha did not significantly cause the accumulation of IPs at an early phase but significantly stimulated inositol bisphosphate (IP2) and inositol monophosphate (IP) formation at late phase of incubation. The maximum stimulation was obtained at greater than 10(-7) M concentrations of these PGs, the levels being three-and twofold for IP2 and IP1, respectively. 9 alpha, 11 beta-PGF2 has a slight effect but PGE2 and the metabolites of PGD2 and PGF2 alpha have no effect up to 10(-6)M. The effects of PGD2 and PGF2 alpha were not additive, but the effect of each PG was additive to that of bradykinin at a late phase of incubation. Inositol 1-monophosphate was mainly identified in the stimulation by 10(-5) M PGD2 and 10(-5) M PGF2 alpha, whereas both inositol 1-monophosphate and inositol 4-monophosphate were produced in the stimulation by 10(5) M bradykinin. Depletion of extracellular Ca2+ diminished the stimulatory effect of PGD2 and PGF2 alpha and late-phase effect of bradykinin, but simple Ca2+ influx into the cells by high K+, ionomycin, or A23187 failed to cause such late-phase effects. These results suggest that PGD2 and PGF2 alpha specifically stimulate hydrolysis of inositol phospholipids.  相似文献   

7.
To evaluate the effect of hormones on renal phospholipid metabolism and turnover, we studied the changes in 32P-labeling of phospholipids in rat cortical tubule suspension. Angiotensin II, phenylephrine and parathyroid hormone (PTH) stimulate 32P incorporation into PC by 25, 29 and 26% and into PI by 189, 328 and 33% above control rates, respectively, whereas phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labeling was not affected. However, when phospholipids were prelabeled with [32P]Pi, addition of angiotensin II led to a significant decrease in phosphatidylinositol 4,5-bisphosphate labeling in the first 2 min with no effect on the other phospholipid fractions. The phenylephrine effect on phospholipid labeling was blocked by prazosin but not by yohimbine, indicating an alpha 1-mediated action. In contrast, the effect of angiotensin II was not inhibited by either antagonist. The stimulating effect of substrates on 32P incorporation reported in the preceding paper was additive to that of hormones. Our results confirm previous studies on renal gluconeogenesis that catecholamines act by an alpha 1-type receptor on proximal tubules, and indicate that phenylephrine and angiotensin II act by different receptor sites exerting the same metabolic effect. The additivity of hormone effects with that of renal substrates indicates that the former are not secondary to release of precursors for phospholipid biosynthesis. The rapid decrease in phosphatidylinositol 4,5-bisphosphate labeling after angiotensin II suggests that the polyphosphoinositide is degraded after hormone binding to the receptor and that PI labeling is a secondary event.  相似文献   

8.
Synaptosomes were isolated from rat cerebra, and incubated in the presence of labelled phosphate and inositol. When the potassium concentration of the medium was increased by replacing NaCl with KCl, there was a marked increase in phosphate labeling of phosphatidic acid (PA) and phosphatidylinositol (PI). This was evident with [K+] above 12 mM and peaked at about 40 mM KCl. In normal calcium buffers, phosphate labeling of PI but not PA declined sharply with [KCl] above 40 mM. In low calcium buffers, the phosphate labeling response was greatly attenuated for both lipids, but PI labeling did not decline at higher [K+].The phosphate labeling response was confined to PA and PI, and was specific for the increase in [K+]0. The same response was seen in constant (105 mM) sodium buffers, and atropine had no effect. The specific radioactivity of ATP was increased by elevated potassium, but not enough to account for the increased labeling of PA. Further, this appeared to be a result of the loss of stored ATP rather than an increase in turnover.Increasing [K+]0 produced a decline in [3H]inositol incorporation into PI in parallel with the increase in its labeling by 33PO4. This was the same in constant sodium and in low calcium buffers. It could be attributed to an inhibition of synaptosomal uptake of labelled inositol from the medium. Synaptosomal inositol content was unaffected.Elevated potassium had a greater effect on PA labeling than on PI, and it was more effective in increasing phosphate labeling of PA than was acetylcholine (ACh). When ACh and elevated potassium were combined at their maximally effective concentration, they acted synergistically to stimulate phosphate incorporation into PA but elevated potassium blocked the increase in [3H]inositol incorporation into PI normally produced by ACh. These results indicate that elevated potassium and ACh act upon the same population of synaptosomes, but affect different biochemical steps. Elevated potassium probably effects phospholipid labeling by a calcium dependent increase in diglyceride production from lipids other than PA or PI.  相似文献   

9.
The effects of various concentrations of serotonin, ACTH, K+, angiotensin II (AII), angiotensin III (AIII) and [Sar1]angiotensin II (SAII) on steroidogenesis and the incorporation of 32P (after preincubation to near equilibrium with the ATP pool) into phosphatidylinositol (PI), phosphatidic acid (PA) and phosphatidylcholine (PC) in a preparation of capsular cells from rat adrenals, consisting of 95% zona glomerulosa (z.g.) and 5% zona fasciculata plus reticularis (z.f.r.) cells, were investigated. Serotonin and ACTH stimulated steroidogenesis in the usual manner but had little or no effect on 32P incorporation into any of the three phospholipids. However, AII, AIII and SAII stimulated steroidogenesis and also 32P incorporation into PA and PI (maximally to about 280% of control values) but not into PC. These results taken together with other data on effects on the cAMP output and Ca2+ fluxes of z.g. cells suggest that stimulation by ACTH and serotonin is mediated by cAMP as second messenger. However, the angiotensins probably act through Ca2+, with associated changes in phospholipid metabolism. The 32P incorporation into PA as a function of lg concentration of AII was linear and showed a reasonable index of precision (0.36 +/- 0.03, eight experiments, 0.23 +/- 0.02 for a further eight experiments) and correlation with steroidogenesis. The corresponding incorporation into PI showed a maximum effect and a much poorer index of precision (1.02 +/- 0.30 (4.69 +/- 3.7] over the same full range of AII concentration used. The effects of AIII and SAII showed similar characteristics for 32P incorporation into both PA and PI, but, as for stimulation of steroidogenesis, at higher concentrations for AIII than for AII. The effects of different doses of AII, AIII and ACTH on the corticosterone output and 32P incorporation into PA, PI and PC of a preparation of cells, consisting of more than 98% z.f.r. cells, from rat decapsulated adrenals were also studied. ACTH, at low doses, which nevertheless markedly stimulated corticosterone output, had a small (maximally to about 125% of control values) but significant effect on 32P incorporation into PA, PI and PC. The maximum effect was usually at about 10(-10) M ACTH and was not significant at 10(-8) M.  相似文献   

10.
Cycloheximide produced a large increase in prostaglandin (PG) E2 output and smaller increases in PGF2 alpha and 6-keto-PGF1 alpha when superfused over the guinea-pig uterus for 20 min. This stimulation of the outputs of these 3 PGs by cycloheximide did not require extracellular calcium. TMB-8 (an intracellular calcium antagonist) had no effect on the stimulation of PGE2 output by cycloheximide, but it completely prevented the stimulation of PGF2 alpha and 6-keto-PGF1 alpha outputs. W-7 (a calmodulin antagonist) had no effect on the stimulation of PGE2 and PGF2 alpha outputs by cycloheximide, but it partially reduced and delayed the stimulation of 6-keto-PGF1 alpha output. Neomycin (a phospholipase C inhibitor) did not prevent the increases in PGE2 and 6-keto-PGF1 alpha outputs produced by cycloheximide. However, neomycin (5 and 10 mM, but not 1 mM) inhibited the small increases in PGF2 alpha caused by cycloheximide. On its own, neomycin produced a dose-dependent, transient increase in 6-keto-PGF1 alpha output without affecting the outputs of PGF2 alpha and PGE2. It is concluded that different mechanisms are involved in the processes by which cycloheximide stimulates the syntheses of PGE2, PGF2 alpha and 6-keto-PGF1 alpha in the guinea-pig uterus.  相似文献   

11.
The effects of beta-adrenergic stimulation on uterine contractions occurring in response to arginine vasotocin (AVT) and prostaglandin F2 alpha (PGF2 alpha) were compared during late pregnancy in the viviparous gecko Hoplodactylus maculatus. High doses of AVT (150 or 1,500 ng/g body weight) induced birth in vivo, but PGF2 alpha at doses of up to 2,000 ng/g did not induce birth. The effect of AVT (150 ng/g) on birth rate in vivo was not enhanced by pretreatment 20 min beforehand with the beta-adrenoreceptor antagonist dichloroisoproterenol (2 micrograms/g), whereas the effect of PGF2 alpha (200 ng/g) was markedly enhanced: geckos treated with dichloroisoproterenol and then with PGF2 alpha showed rapid birth-related behavior and gave birth. Isolated uteri showed a tonic contraction in response to AVT (100 ng/ml) and to PGF2 alpha (1,000 ng/ml). Pre-exposure of isolated uteri to the beta-adrenoreceptor agonist isoproterenol (1 microgram/ml) caused relaxation; this pre-exposure did not block the tonic contraction occurring in response to AVT, whereas it completely blocked the tonic contraction induced by PGF2 alpha. We conclude that in H. maculatus, beta-adrenergic stimulation inhibits uterine contractions induced by PGF2 alpha but not those induced by AVT. These data are the first to show that beta-adrenergic stimulation inhibits uterotonic responses to PGF2 alpha in a reptile, and they suggest that the cellular mechanisms by which AVT and PGF2 alpha induce contraction may differ in this species. They also provide further evidence for similarities between mammals and reptiles in the effects of beta-adrenergic stimulation on uterine relaxation.  相似文献   

12.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

13.
Prostaglandin F2 alpha (PGF2 alpha); which stimulates DNA synthesis in resting 3T3 cells, also stimulates the incorporation of [32P]PO4 into phosphatidylinositol. The effect is selective for PGF2 alpha when compared with PGE1, PGE2, and PGF2 beta. Epidermal growth factor (EGF) also stimulates DNA synthesis but does not affect phosphatidylinositol turnover. PGE1, which acts synergistically with PGF2 alpha to enhance DNA synthesis, does not affect the ability of PGF2 alpha, to enhance the incorporation of [32P]PO4 into phosphatidylinositol. PGF2 alpha, also causes a small increase in the cellular content of 1,2-diacylglycerol. This effect is not shared by EGF or PGE1. Stimulation of phosphatidylinositol metabolism resulting in an increase in the cellular content of 1,2-diacylglycerol may thus constitute an event in the pathway leading to the initiation of DNA synthesis in which PGF2 alpha differs in its action from EGF.  相似文献   

14.
Stimulation of Phosphoinositide Hydrolysis by Serotonin in C6 Glioma Cells   总被引:5,自引:3,他引:2  
5-Hydroxytryptamine (serotonin or 5-HT) stimulated the incorporation of 32Pi into phosphatidylinositol (PI) but not into polyphosphoinositides in C6 glioma cells with an EC50 of 1.2 X 10(-7) M. The phosphoinositide response was blocked by the 5-HT2 antagonists ketanserin and spiperone but inhibited only partly by methysergide and mianserin. Atropine, prazosin, and yohimbine did not block the response, whereas fluphenazine and haloperidol did so partially but also inhibited basal incorporation by approximately 30%. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin did not cause stimulation. Incubation with 5-HT (1 microM) for 1 h increased the incorporation of [2-3H]myoinositol into all phosphoinositides but not into inositol phosphates (IPs). Li+ alone at 10 mM increased labeling in inositol bisphosphate (IP2) and trisphosphate (IP3), whereas labeling in IP and phosphoinositides remained unaltered. Addition of 5-HT had no effect on this increase. Mn2+ at 1 mM enhanced labeling in PI, PI-4-phosphate, lyso-PI, glycerophosphoinositol, and IP, but the presence of 5-HT again did not cause further stimulation. 5-HT also stimulated the release of IPs in cells prelabeled with [2-3H]myo-inositol, incubated with LiCl (10 mM) and inositol (10 mM), and then exposed to 5-HT (1 microM). Radioactivity in IP2 and IP3 was very low, was stimulated approximately 50% as early as 30 s, and remained elevated for at least 20 min. Radioactivity in IP was at least 10 times as high as in IP3 but was increased only from 3 min on with a peak at 20 min, when the elevation was approximately 40 times that in IP3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We investigated transpulmonary enzymatic conversion of prostaglandin F2 alpha (PGF) to the 13,14-dihydro-15-keto metabolite (PGFM) in normal and acutely lung injured sheep. PGF was infused directly into the right ventricle. Sequential, simultaneous blood samples were drawn from the pulmonary artery (PA) and aorta (A). PGF and PGFM plasma concentrations were quantitated by double antibody radioimmunoassay (RIA). The pulmonary conversion rate of PGF in normal lung was established over a wide range of concentrations in intubated, normoxic, and hemodynamically stable sheep. Both zero and first order kinetics were present. PGF had no physiological effects on either pulmonary or systemic hemodynamics at any infusion rate studied. Acute lung injury was produced by intravenous injections of oleic acid into the PA until the resting mean pulmonary artery pressure doubled. Infusions were then repeated and fractional metabolism of PGF across the lung was assessed. PGF, at infusion rates of 2 micrograms/kg/min and 8 micrograms/kg/min, was metabolized greater than 70% respectively. Thus, there was no difference between control or experimental groups in PGF conversion. We conclude that the in vivo sheep lung has an extensive substrate-dependent capacity to metabolize PGF and this mechanism is resistant to severe acute oleic acid lung injury.  相似文献   

16.
The effects of PGE2, PGF2alpha, trilostane, RU-486, PA, INDO, MER-25, PGE2, or PGF2alpha + PA on secretion of progesterone, PGE2, or PGF2alpha by bovine corpora lutea (CL) of mid-pregnancy in vitro for 4 and 8 hr was examined. Secretion of PGE2 and PGF2alpha increased with time in culture (P < or = 0.05). PGE2 and PGE2 + PA increased (P < or = 0.05) secretion of progesterone at 4 and 8 h, progesterone secretion was increased (P < or = 0.05) at 4 h; but not at 8 h (P > or = 0.05) by trilostane, mifepristone, PGF2alpha and PGF2alpha + PA, and was decreased at 8 h by PGF2alpha and PGF2alpha + PA. Indomethacin decreased (P < or = 0.05) secretion of PGE2, PGF2alpha, and progesterone at 4 and 8 h. Trilostane, PA, PGF2alpha, RU-486 and PGF2alpha + PA increased (P < or = 0.05) PGE2 at 4 h only. Palmitic acid decreased (P < or = 0.05) PGF2alpha at 4 h, while trilostane, RU-486, or MER-25 did not affect (P < or = 0.05) PGE2 of PGF2alpha secretion. It is concluded that PGE2 of luteal tissue origin is the luteotropin at mid-pregnancy in cows. Also, it is suggested that PA may alter progesterone secretion by affecting the inter conversion of PGE2 and PGF2alpha.  相似文献   

17.
Injection of PGF2 alpha (250 microgram/rat) 15 min prior to isolation of corpora lutea (CL) from PMSG treated immature rats significantly reduced the LH stimulation of adenylate cyclase in CL membranes. The LH stimulation did not return to normal even 24 h after PGF2 alpha injection. A transient decrease in epinephrine and fluoride stimulation of AC was also observed, the response returning to normal 6-12 h after PGF2 alpha treatment. In vitro incubation of whole isolated CL with 0.005 micrometer or higher concentrations of PGF2 alpha markedly reduced the LH and fluoride stimulation of AC in the CL membranes. Exposure of CL to PGF2 alpha for 15 min in vitro reduced the LH and fluoride response. The results are discussed in relation to the suppressive action of PGF2 alpha on LH receptors in CL, and a mechanism is proposed to explain the discrepancy in time relation between our results and the LH receptor studies. The proposed mechanism might also explain the transient decrease in epinephrine and fluoride stimulation of AC.  相似文献   

18.
Confluent quiescent Swiss mouse 3T3 cells can be stimulated to initiate DNA synthesis and to divide by epidermal growth factor (EGF) and prostaglandin F2 alpha (PGF2 alpha), two mitogens of unrelated structure. Heat treatment at 46 degrees C for up to 20 min of confluent quiescent cells, which has no mitogenic effect, can enhance the stimulatory effect of suboptimal concentrations of EGF or PGF2 alpha on the initiation of DNA synthesis. Furthermore, insulin, which is not mitogenic in these cells, enhances the effect of these mitogens, but this effect is not further enhanced by heat treatment. Likewise the combination of EGF and PGF2 alpha is synergistic on DNA synthesis, and this effect is also not enhanced by the heat treatment. Incubation at 46 degrees C for longer than 20 min was inhibitory in all cases. These results suggest that heat treatment induces events which affect the regulation of the initiation of DNA synthesis in a manner depending on the duration of the heat treatment and the stimulation of the cells.  相似文献   

19.
Tunicamycin, an inhibitor of the asparagine-linked protein N-glycosylation, blocks the initiation of DNA synthesis in Swiss 3T3 cells stimulated by prostaglandin F2 alpha alone or with insulin. This effect is exerted only when tunicamycin is added from 0 to 8 h after stimulation and it decreases the rate of entry into S phase. Blocking of labeled sugar incorporation to proteins occurs regardless of the time of PGF2 alpha stimulation. In contrast tunicamycin does not inhibit protein synthesis. These results suggest that N-glycoprotein synthesis early during the prereplicative phase is an important event controlling the mitogenic action of PGF2 alpha.  相似文献   

20.
We examined the effect of prostaglandin (PG) F2 alpha on phosphoinositide (PI) hydrolysis in rat cultured astrocytes. PGF2 alpha stimulated the formation of [3H]inositol phosphates in [3H]inositol-labeled astrocytes with the ED50 value of 23 nM, whereas PGD2 and PGE2 were much less effective than PGF2 alpha. Transformation of astrocytes was accompanied by an increase in the stimulatory response of PGF2 alpha. Pretreatment of the astrocytes with pertussis toxin and cholera toxin did not affect the PGF2 alpha-evoked PI hydrolysis. In the digitonin-permeabilized astrocytes, PGF2 alpha significantly enhanced the GTP gamma S-evoked PI hydrolysis in the presence of Ca2+. These results indicate that rat cultured astrocytes possess PGF2 alpha receptors coupled to phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号