共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this paper, we develop a Gaussian estimation (GE) procedure to estimate the parameters of a regression model for correlated (longitudinal) binary response data using a working correlation matrix. A two‐step iterative procedure is proposed for estimating the regression parameters by the GE method and the correlation parameters by the method of moments. Consistency properties of the estimators are discussed. A simulation study was conducted to compare 11 estimators of the regression parameters, namely, four versions of the GE, five versions of the generalized estimating equations (GEEs), and two versions of the weighted GEE. Simulations show that (i) the Gaussian estimates have the smallest mean square error and best coverage probability if the working correlation structure is correctly specified and (ii) when the working correlation structure is correctly specified, the GE and the GEE with exchangeable correlation structure perform best as opposed to when the correlation structure is misspecified. 相似文献
4.
Shkedy Z Vandersmissen V Molenberghs G Van Craenendonck H Aerts N Steckler T Bijnens L 《Biometrical journal. Biometrische Zeitschrift》2005,47(3):286-298
The differential reinforcement of low-rate 72 seconds schedule (DRL-72) is a standard behavioral test procedure for screening potential antidepressant compounds. The protocol for the DRL-72 experiment, proposed by Evenden et al. (1993), consists of using a crossover design for the experiment and one-way ANOVA for the statistical analysis. In this paper we discuss the choice of several crossover designs for the DRL-72 experiment and propose to estimate the treatment effects using either generalized linear mixed models (GLMM) or generalized estimating equation (GEE) models for clustered binary data. 相似文献
5.
John S. Preisser Kunthel By Jamie Perin Bahjat F. Qaqish 《Biometrical journal. Biometrische Zeitschrift》2012,54(5):701-715
Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one‐step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster‐deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. 相似文献
6.
Summary . Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease ( Volberding et al., 1990 , The New England Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined. 相似文献
7.
This paper considers the impact of bias in the estimation of the association parameters for longitudinal binary responses when there are drop-outs. A number of different estimating equation approaches are considered for the case where drop-out cannot be assumed to be a completely random process. In particular, standard generalized estimating equations (GEE), GEE based on conditional residuals, GEE based on multivariate normal estimating equations for the covariance matrix, and second-order estimating equations (GEE2) are examined. These different GEE estimators are compared in terms of finite sample and asymptotic bias under a variety of drop-out processes. Finally, the relationship between bias in the estimation of the association parameters and bias in the estimation of the mean parameters is explored. 相似文献
8.
Summary Many time‐to‐event studies are complicated by the presence of competing risks and by nesting of individuals within a cluster, such as patients in the same center in a multicenter study. Several methods have been proposed for modeling the cumulative incidence function with independent observations. However, when subjects are clustered, one needs to account for the presence of a cluster effect either through frailty modeling of the hazard or subdistribution hazard, or by adjusting for the within‐cluster correlation in a marginal model. We propose a method for modeling the marginal cumulative incidence function directly. We compute leave‐one‐out pseudo‐observations from the cumulative incidence function at several time points. These are used in a generalized estimating equation to model the marginal cumulative incidence curve, and obtain consistent estimates of the model parameters. A sandwich variance estimator is derived to adjust for the within‐cluster correlation. The method is easy to implement using standard software once the pseudovalues are obtained, and is a generalization of several existing models. Simulation studies show that the method works well to adjust the SE for the within‐cluster correlation. We illustrate the method on a dataset looking at outcomes after bone marrow transplantation. 相似文献
9.
Summary. Continuous proportional data arise when the response of interest is a percentage between zero and one, e.g., the percentage of decrease in renal function at different follow‐up times from the baseline. In this paper, we propose methods to directly model the marginal means of the longitudinal proportional responses using the simplex distribution of Barndorff‐Nielsen and Jørgensen that takes into account the fact that such responses are percentages restricted between zero and one and may as well have large dispersion. Parameters in such a marginal model are estimated using an extended version of the generalized estimating equations where the score vector is a nonlinear function of the observed response. The method is illustrated with an ophthalmology study on the use of intraocular gas in retinal repair surgeries. 相似文献
10.
Positive and negative predictive values of a diagnostic test are key clinically relevant measures of test accuracy. Surprisingly, statistical methods for comparing tests with regard to these parameters have not been available for the most common study design in which each test is applied to each study individual. In this paper, we propose a statistic for comparing the predictive values of two diagnostic tests using this paired study design. The proposed statistic is a score statistic derived from a marginal regression model and bears some relation to McNemar's statistic. As McNemar's statistic can be used to compare sensitivities and specificities of diagnostic tests, parameters that condition on disease status, our statistic can be considered as an analog of McNemar's test for the problem of comparing predictive values, parameters that condition on test outcome. We report on the results of a simulation study designed to examine the properties of this test under a variety of conditions. The method is illustrated with data from a study of methods for diagnosis of coronary artery disease. 相似文献
11.
Modelling multivariate binary data with alternating logistic regressions 总被引:12,自引:0,他引:12
12.
Summary . A retrospective dental study was conducted to evaluate the degree to which pulpal involvement affects tooth survival. Due to the clustering of teeth, the survival times within each subject could be correlated and thus the conventional method for the case–control studies cannot be directly applied. In this article, we propose a marginal model approach for this type of correlated case–control within cohort data. Weighted estimating equations are proposed for the estimation of the regression parameters. Different types of weights are also considered for improving the efficiency. Asymptotic properties of the proposed estimators are investigated and their finite sample properties are assessed via simulations studies. The proposed method is applied to the aforementioned dental study. 相似文献
13.
14.
Kauermann G 《Biometrics》2000,56(3):692-698
This paper presents a smooth regression model for ordinal data with longitudinal dependence structure. A marginal model with cumulative logit link is applied to cope with the ordinal scale and the main and covariate effects in the model are allowed to vary with time. Local fitting is pursued and asymptotic properties of the estimates are discussed. In a second step, the longitudinal dependence of the observations is considered. Cumulative log odds ratios are fitted locally, which allows investigation of how the longitudinal dependence of the ordinal observations changes with time. 相似文献
15.
Neuhaus JM 《Biometrics》2002,58(3):675-683
Misclassified clustered and longitudinal data arise in studies where the response indicates a condition identified through an imperfect diagnostic procedure. Examples include longitudinal studies that use an imperfect diagnostic test to assess whether or not an individual has been infected with a specific virus. This article presents methods to implement both population-averaged and cluster-specific analyses of such data when the misclassification rates are known. The methods exploit the fact that the class of generalized linear models enjoys a closure property in the case of misclassified responses. Data from longitudinal studies of infectious disease will illustrate the findings. 相似文献
16.
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the \"last observation carried forward\" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior. 相似文献
17.
18.
Mancl and DeRouen (2001, Biometrics57, 126-134) and Kauermann and Carroll (2001, JASA96, 1387-1398) proposed alternative bias-corrected covariance estimators for generalized estimating equations parameter estimates of regression models for marginal means. The finite sample properties of these estimators are compared to those of the uncorrected sandwich estimator that underestimates variances in small samples. Although the formula of Mancl and DeRouen generally overestimates variances, it often leads to coverage of 95% confidence intervals near the nominal level even in some situations with as few as 10 clusters. An explanation for these seemingly contradictory results is that the tendency to undercoverage resulting from the substantial variability of sandwich estimators counteracts the impact of overcorrecting the bias. However, these positive results do not generally hold; for small cluster sizes (e.g., <10) their estimator often results in overcoverage, and the bias-corrected covariance estimator of Kauermann and Carroll may be preferred. The methods are illustrated using data from a nested cross-sectional cluster intervention trial on reducing underage drinking. 相似文献
19.
Since Liang and Zeger (1986) proposed the ‘generalized estimating equations’ approach for the estimation of regression parameters in models with correlated discrete responses, a lot of work has been devoted to the investigation of the properties of the corresponding GEE estimators. However, the effects of different kinds of covariates have often been overlooked. In this paper it is shown that the use of non-singular block invariant matrices of covariates, as e.g. a design matrix in an analysis of variance model, leads to GEE estimators which are identical regardless of the ‘working’ correlation matrix used. Moreover, they are efficient (McCullagh, 1983). If on the other hand only covariates are used which are invariant within blocks, the efficiency gain in choosing the ‘correct’ vs. an ‘incorrect’ correlation structure is shown to be negligible. The results of a simple simulation study suggest that although different GEE estimators are not identical and are not as efficient as a ML estimator, the differences are still negligible if both types of invariant covariates are present. 相似文献
20.
The multivariate binomial logit-normal distribution is a mixture distribution for which, (i) conditional on a set of success probabilities and sample size indices, a vector of counts is independent binomial variates, and (ii) the vector of logits of the parameters has a multivariate normal distribution. We use this distribution to model multivariate binomial-type responses using a vector of random effects. The vector of logits of parameters has a mean that is a linear function of explanatory variables and has an unspecified or partly specified covariance matrix. The model generalizes and provides greater flexibility than the univariate model that uses a normal random effect to account for positive correlations in clustered data. The multivariate model is useful when different elements of the response vector refer to different characteristics, each of which may naturally have its own random effect. It is also useful for repeated binary measurement of a single response when there is a nonexchangeable association structure, such as one often expects with longitudinal data or when negative association exists for at least one pair of responses. We apply the model to an influenza study with repeated responses in which some pairs are negatively associated and to a developmental toxicity study with continuation-ratio logits applied to an ordinal response with clustered observations. 相似文献