首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca2+-activated K+ (SK) channel, SK3, promotes feedback regulation of myometrial Ca2+ and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mice (SK3T/T), in which SK3 is overexpressed and can be suppressed by oral administration of doxycycline (SK3T/T+Dox). We found SK3 protein in mouse myometrium, and this expression was substantially higher in SK3T/T mice and lower in SK3T/T+Dox mice compared with wild-type (WT) controls. Sustained contractions elicited by 60 mM KCl were not different among SK3T/T, SK3T/T+Dox, and WT mice. However, the rate of onset and magnitude of spontaneously occurring phasic contractions was muted significantly in isolated uterine strips from SK3T/T mice compared with those from WT mice. These spontaneous contractions were augmented greatly by blockade of SK channels with apamin or by suppression of SK3 expression. Phasic but not tonic contraction in response to oxytocin was depressed in uterine strips from SK3T/T mice, whereas suppression of SK3 channel expression or treatment with apamin promoted the predominance of large coordinated phasic events over tone. Spontaneous contractions and the phasic component of oxytocin contractions were blocked by nifedipine but not by cyclopiazonic acid. Our findings suggest that SK3 channels play an important role in regulating uterine function by limiting influx through L-type Ca2+ channels and disrupting the development of concerted phasic contractile events. uterus; Ca2+-activated K+ channel; doxycycline; mouse  相似文献   

2.
This study tested the hypothesis that the uterus achieves maximum contractile capabilities before the onset of labor. Basal and agonist-stimulated contractions were assessed in uterine strips on Day 15 or 18 of pregnancy, the day of parturition, or 1 day postpartum (n = 4-13 per group). Spontaneous contractions were evident in all groups (n = 4-13 per gestational group); contraction frequency was greater in peripartum groups than in virgin controls ( approximately 4.6 versus 2.8/200 sec). Peak amplitude was nearly 9-fold higher on Days 15 and 18 and over 30-fold higher in the postpartum and 1 day postpartum groups than in nonpregnant mice. Maximum frequency and peak amplitude were achieved in response to 10(-6) to 10(-8) M oxytocin or arginine vasopressin (OT(max) or AVP(max)). Frequency of contractions in response to OT(max) peaked on Day 18 and then declined. Contraction amplitude increased 5-fold on Day 15, declined on the day of birth (equivalent to nonpregnant level), then rebounded to peak on postpartum Day 1. AVP(max) similarly increased frequency and amplitude of contractions, except that maximum contraction amplitude occurred postpartum. Thus, an endogenous oscillator, residing in the uterus, sustains high basal and agonist-induced contraction frequency during pregnancy. Although acceleration of this pacemaker occurred before term, the data suggest that peripartum increases in contraction amplitude characterize the transition to the powerful synchronous contractions of parturition.  相似文献   

3.
The pregnant rat uterus contains a membrane-bound metalloendopeptidase that is biochemically and immunologically similar to kidney enkephalinase (E.C.3.4.24.11). The uterus enzyme readily cleaved specific neutral endopeptidase substrates and oxytocin as well as the synthetic elastase substrate, Suc(Ala)3-pNA, yet did not digest native elastin. Using specific inhibitors, the uterus endopeptidase was identified as a metallopeptidase and not a serine protease, having an absolute requirement for zinc and perhaps calcium for maximal activity. The uterus endopeptidase cross-reacted with polyclonal antiserum to kidney microvillar endopeptidase and a monoclonal antibody to common acute lymphocytic leukemia antigen. Immunohistochemical localization of the enzyme in a 17 day pregnant uterus indicated that the enzyme was localized on the smooth muscle bundles of the myometrium and the endometrial epithelium. Total enzyme activity was 25 times higher in the late-term pregnant uterus (17th day of pregnancy) than in the nonpregnant uterus. Enzyme levels dropped rapidly prior to parturition and within 4 days after delivery the enzyme activity had returned to control levels. Inhibition of NEP in uterine strips with phosphoramidon resulted in a marked potentiation of oxytocin-induced contractions. Our results suggest that the uterine endopeptidase may have an important role in regulating uterine smooth muscle cell contraction during the later stages of pregnancy through its action on oxytocin and perhaps other biologically active peptides.  相似文献   

4.
Preterm labor (PTL) affects up to 25% of human pregnancies in developing countries, but there are few therapeutic options. Based on the key role of oxytocin (OXT) in labor and parturition, OXT antagonists are a potentially useful class of drugs for PTL. Barusiban is a new selective, potent, and long-acting OXT receptor antagonist. In this study barusiban was given by continuous i.v. infusion to monkeys during the last 3 wk of pregnancy; the monkeys were also given daily doses of OXT to induce uterine contractions and simulate PTL. Barusiban effectively suppressed OXT-induced PTL-like contractions and prevented early delivery. In contrast, fenoterol (a beta2-adrenoceptor [beta2-AR] agonist used as a comparative control) did not inhibit uterine contractions in this model. Barusiban was particularly effective in maintaining low intrauterine pressure (IUP) near the end of pregnancy, which is when IUP in both OXT controls and fenoterol-treated females increased substantially. Although barusiban delayed the onset of labor, it did not prevent normal delivery. These data demonstrate the safety and efficacy of barusiban in reducing uterine contractility in response to repeated OXT challenge, and suggest that barusiban may be therapeutically effective in long-term treatment of PTL.  相似文献   

5.
Organized uterine contractions, including those necessary for parturition, are dependent on calcium entry through voltage-gated calcium channels in myometrial smooth muscle cells. Recent evidence suggests that small-conductance Ca(2+)-activated potassium channels (K(Ca)2), specifically isoforms K(Ca)2.2 and 2.3, may control these contractions through negative feedback regulation of Ca(2+) entry. We tested whether selective pharmacologic activation of K(Ca)2.2/2.3 channels might depress uterine contractions, providing a new strategy for preterm labor intervention. Western blot analysis and immunofluorescence microscopy revealed expression of both K(Ca)2.2 and K(Ca)2.3 in the myometrium of nonpregnant (NP) and pregnant (gestation day 10 and 16; D10 and D16, respectively) mice. Spontaneous phasic contractions of isolated NP, D10, and D16 uterine strips were all suppressed by the K(Ca)2.2/2.3-selective activator CyPPA in a concentration-dependent manner. This effect was antagonized by the selective K(Ca)2 inhibitor apamin. Whereas CyPPA sensitivity was reduced in D10 and D16 versus NP strips (pIC(50) 5.33 ± 0.09, 4.64 ± 0.03, 4.72 ± 0.10, respectively), all contractions were abolished between 30 and 60 μM. Blunted contractions were associated with CyPPA depression of spontaneous Ca(2+) events in myometrial smooth muscle bundles. Augmentation of uterine contractions with oxytocin or prostaglandin F(2α) did not reduce CyPPA sensitivity or efficacy. Finally, in an RU486-induced preterm labor model, CyPPA significantly delayed time to delivery by 3.4 h and caused a 2.5-fold increase in pup retention. These data indicate that pharmacologic stimulation of myometrial K(Ca)2.2/2.3 channels effectively suppresses Ca(2+)-mediated uterine contractions and delays preterm birth in mice, supporting the potential utility of this approach in tocolytic therapies.  相似文献   

6.
Small-conductance Ca(2+)-activated K(+) (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing beta-galactosidase (beta-gal) under the direction of the SK2 promoter (SK2 beta-gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2(-/-) mice) to assess SK2 function. In SK2 beta-gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2(+/+)) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC(50) = 0.16 nM), whereas phasic contractions of SK2(-/-) strips were unaffected. Nerve-mediated contractions of SK2(+/+) UBSM strips were also increased by apamin, an effect absent in SK2(-/-) strips. Apamin increased the sensitivity of SK2(+/+) UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 +/- 4 Hz, n = 6; apamin, 12 +/- 2 Hz, n = 7; P < 0.05). In contrast, the sensitivity of SK2(-/-) UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility.  相似文献   

7.
A complex integration of molecular and electrical signals is needed to transform a quiescent uterus into a contractile organ at the end of pregnancy. Despite the discovery of key regulators of uterine contractility, this process is still not fully understood. Transgenic mice provide an ideal model in which to study parturition. Previously, the only method to study uterine contractility in the mouse was ex vivo isometric tension recordings, which are suboptimal for several reasons. The uterus must be removed from its physiological environment, a limited time course of investigation is possible, and the mice must be sacrificed. The recent development of radiometric telemetry has allowed for longitudinal, real-time measurements of in vivo intrauterine pressure in mice. Here, the implantation of an intrauterine telemeter to measure pressure changes in the mouse uterus from mid-pregnancy until delivery is described. By comparing differences in pressures between wild type and transgenic mice, the physiological impact of a gene of interest can be elucidated. This technique should expedite the development of therapeutics used to treat myometrial disorders during pregnancy, including preterm labor.  相似文献   

8.
Unlike most insects, the tsetse female gives birth to a single, fully grown larva at the culmination of each pregnancy cycle. The expulsion of the larva is regulated by a hormone present in rich abundance within the female's uterus. The hormone elicits parturition when injected into neck-ligated females at late stages of pregnancy and abortion when injected at earlier stages. We refer to this highly active material (0.043 uterus equivalents stimulates parturition in 50% of the females) as parturition hormone. Injection of the active extract, which appears to be a peptide or small protein, initiates the series of blood pressure pulsations and uterine contractions normally associated with parturition. The discovery that a uterus extract from the flesh fly also elicits parturition in tsetse suggests that this hormone may be widely distributed in insects.  相似文献   

9.
Three broad classes of Ca(2+)-activated potassium channels are defined by their respective single channel conductances, i.e. the small, intermediate, and large conductance channels, often termed the SK, IK, and BK channels, respectively. SK channels are likely encoded by three genes, Kcnn1-3, whereas IK and most BK channels are most likely products of the Kcnn4 and Slo (Kcnma1) genes, respectively. IK channels are prominently expressed in cells of the hematopoietic system and in organs involved in salt and fluid transport, including the colon, lung, and salivary glands. IK channels likely underlie the K(+) permeability in red blood cells that is associated with water loss, which is a contributing factor in the pathophysiology of sickle cell disease. IK channels are also involved in the activation of T lymphocytes. The fluid-secreting acinar cells of the parotid gland express both IK and BK channels, raising questions about their particular respective roles. To test the physiological roles of channels encoded by the Kcnn4 gene, we constructed a mouse deficient in its expression. Kcnn4 null mice were of normal appearance and fertility, their parotid acinar cells expressed no IK channels, and their red blood cells lost K(+) permeability. The volume regulation of T lymphocytes and erythrocytes was severely impaired in Kcnn4 null mice but was normal in parotid acinar cells. Despite the loss of IK channels, activated fluid secretion from parotid glands was normal. These results confirm that IK channels in red blood cells, T lymphocytes, and parotid acinar cells are indeed encoded by the Kcnn4 gene. The role of these channels in water movement and the subsequent volume changes in red blood cells and T lymphocytes is also confirmed. Surprisingly, Kcnn4 channels appear to play no required role in fluid secretion and regulatory volume decrease in the parotid gland.  相似文献   

10.
The effect of isoproterenol (ISO), norepinephrine (NE) and phenylephrine (PHE) on electrically-induced contractions of mice uterine horns was studied during pregnancy. At the different times of gestation adrenergic agonists always inhibited uterine contractions in the following rank order of potency: ISO greater than NE greater than PHE. Cumulative dose-response curves constructed for the effect of these amines during diestrous, and at days 3-7, 10-15, 17-21 of gestation, showed that EC50 values increased gradually as term approached, which could imply a lower capacity of the uterus to respond to adrenergic drugs. Some likely explanations for this phenomenon are proposed. It is suggested that this lower response to catecholamines at the end of pregnancy could be a cause for the reduced success of beta 2-adrenergic drugs to stop premature labor.  相似文献   

11.
Calcitonin gene-related peptide (CGRP) inhibits myometrial contractile activity. However, the responsiveness of the mouse myometrium to CGRP is dependent on the hormonal and gestational stage. The inhibitory effect of CGRP in the myometrium is prominent during gestation and declines at parturition. The present study was undertaken to examine if nitric oxide (NO) production by nitric oxide synthase (NOS) isoforms mediates the inhibitory action of CGRP on uterine contractions as has been suggested earlier. Transgenic mice deficient in either of the three major NOS isoforms: endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS) were used. Isometric force measurements on myometrial strips obtained from NOS-deficient mice were carried out and the inhibitory capacity of CGRP was monitored. CGRP inhibited KCl-induced contractions of the myometrial strips obtained from eNOS(-/-), iNOS(-/-), and nNOS(-/-) mice with equal efficiency as in wild-type animals. Additionally, NOS protein expression in the mouse uterus during gestation and during the estrous cycle was examined by means of Western immunoblot analysis. No correlation between NOS expression and inhibitory activity of CGRP was evident. The results suggest that the inhibitory action of CGRP in the mouse uterus is independent of the activity of these NOS isoforms.  相似文献   

12.
Hypothyroidism significantly reduced the mean amplitude and increased the mean frequency of spontaneous rhythmic contractions in 18 day pregnant rat uterus. Nifedipine (10(-12)-10(-9) M) and diltiazem (10(-10)-10(-6) M) caused concentration related inhibition of the myogenic responses of the uterine strips obtained from both pregnant and hypothyroid state. However, nifedipine was less potent (IC50:2.11 x 10(-11) M) in pregnant hypothyroid state as compared to pregnant control (IC50: 3.1 x 10(-12) M). Similarly, diltiazem was less potent (IC50: 3.72 x 10(-9) M) in inhibiting the uterine spontaneous contractions in hypothyroid than in pregnant rat uterus (IC50:5.37 x 10(-10) M). A similar decrease in the sensitivity to nifedipine and diltiazem for reversal of K+ (100 mM)-induced tonic contraction and K(+)-stimulated 45Ca2+ influx was observed with these calcium channel antagonists in uterus obtained from hypothyroid pregnant rats compared to the controls. Nifedipine-sensitive influx of 45Ca(2+)-stimulated either by K+ (100 mM) or by Bay K8644 (1,4-dihydro-2,6-methyl-5-nitro-4-[2'-(trifluromethyl)phenyl]-3-pyridine carboxylic acid methyl ester) (10(-9) M) was significantly less in uterine strips from hypothyroid rats compared to controls. The results suggest that the inhibition of uterine rhythmic contractions may be attributable to a reduction in rat myometrial Ca2+ channel function in the hypothyroid state.  相似文献   

13.
Oxytocin is extensively used to induce or augment uterine contractions, especially to facilitate the third stage of labor in humans. Administration of oxytocin to parturient sows reduces duration of labor whereas mortality of the offspring may remain unchanged. This study aimed to evaluate whether time of administration of oxytocin during parturition may alter the uterine response and fetal outcomes. Two hundred parturient sows were randomly assigned to intramuscularly receive either saline solution (control group) or oxytocin 0.083 IU/kg immediately after the delivery of the 1st, 4th or 8th piglet (groups O-1, 0-4 and 0-8, respectively). Uterine effects and fetal outcomes were registered in all groups. The duration of labor was 20-40 min shorter (P < 0.0001) and time interval between babies was reduced by 3-5 min (P < 0.0001) in the three groups receiving oxytocin. The duration and intensity of contractions, meconium-stained piglets and intrapartum deaths decreased as time at which oxytocin administered during labor was increased. In group 0-8, we observed approximately 70% less meconium-stained piglets and intrapartum deaths than in the control group. In conclusion, oxytocin administered at early phases of parturition to sows may increase duration and intensity of uterine contractions as well as adverse fetal outcomes.  相似文献   

14.

Background  

At term, cervical ripening in coordination with uterine contractions becomes a prerequisite for a normal vaginal delivery. Currently, cervical ripening is considered to occur independently from uterine contractions. Many evidences suggest that cervical ripening resembles an inflammatory process. Comparatively little attention has been paid to the increased flexibility of the pelvic symphysis that occurs in many species to enable safe delivery. The aim of this study was to investigate whether the guinea-pig interpubic joint relaxation process observed during late pregnancy and parturition resembles an inflammatory process.  相似文献   

15.
When the urinary bladder is full, activation of parasympathetic nerves causes release of neurotransmitters that induce forceful contraction of the detrusor muscle, leading to urine voiding. The roles of ion channels that regulate contractility of urinary bladder smooth muscle (UBSM) in response to activation of parasympathetic nerves are not well known. The present study was designed to characterize the role of large (BK)- and small-conductance (SK) Ca(2+)-activated K(+) (K(Ca)) channels in regulating UBSM contractility in response to physiological levels of nerve stimulation in UBSM strips from mice. Nerve-evoked contractions were induced by electric field stimulation (0.5-50 Hz) in isolated strips of UBSM. BK and SK channel inhibition substantially increased the amplitude of nerve-evoked contractions up to 2.45 +/- 0.12- and 2.99 +/- 0.25-fold, respectively. When both SK and BK channels were inhibited, the combined response was additive. Inhibition of L-type voltage-dependent Ca(2+) channels (VDCCs) in UBSM inhibited nerve-evoked contractions by 92.3 +/- 2.0%. These results suggest that SK and BK channels are part of two distinct negative feedback pathways that limit UBSM contractility in response to nerve stimulation by modulating the activity of VDCCs. Dysfunctional regulation of UBSM contractility by alterations in BK/SK channel expression or function may underlie pathologies such as overactive bladder.  相似文献   

16.
The molecular mechanisms controlling the initiation of parturition remain largely undefined. We report a new animal model in which parturition does not occur. A line of mice expressing a human apolipoprotein B (APOB) gene fail to deliver their young if the transgene is present in homozygous (Tg/Tg), but not in heterozygous (Tg/Wt), form. Cloning and mapping of the transgene insertion locus indicate that 10 copies of the 80-kilobase APOB genomic fragment inserted into mouse chromosome 6 result in a small, 390-base pair deletion of mouse genomic DNA. Nine other lines expressing the transgene have normal labor, suggesting that transgene insertion in this mutant line disrupted a mouse gene crucial for successful parturition. The pathophysiology of parturition failure in these animals was defined using physiological, endocrinological, and morphological techniques. Results indicate that luteolysis occurs in Tg/Tg mice but is delayed by 1 day. Delivery did not occur in mutant mice at term after spontaneous luteolysis or even after removal of progesterone action by ovariectomy or antiprogestin treatment. Biomechanical and functional studies of the uterus and cervix revealed that the primary cause of failed parturition in Tg/Tg mice was not inadequate uterine contractions of labor but, rather, a rigid, inelastic cervix at term that was abnormally rich in neutrophils and tissue monocytes. Characterization of the transgene insertional mutant, Tg/Tg, indicates that progesterone withdrawal is insufficient to complete parturition in the presence of inadequate cervical ripening at term.  相似文献   

17.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

18.
Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors. Quantitative PCR experiments revealed that SK3 channel mRNA expression in isolated DSM single cells was ~12- to 44-fold higher than SK1, SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages for SK3 channels but not SK1, SK2, and IK channels. Western blot and immunohistochemistry analysis further confirmed protein expression for the SK3 channel and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 μM), a selective SK channel inhibitor, significantly increased the spontaneous phasic contraction amplitude, muscle force integral, phasic contraction duration, and muscle tone of human DSM isolated strips. Apamin (1 μM) also increased the amplitude of human DSM electrical field stimulation (EFS)-induced contractions. However, TRAM-34 (1 μM), a selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced DSM contractions suggesting a lack of IK channel functional role in human DSM. In summary, our molecular and functional studies revealed that the SK, particularly the SK3 subtype, but not IK channels are expressed and regulate the spontaneous and nerve-evoked contractions in human DSM.  相似文献   

19.
The present study was undertaken to investigate the in vitro influence of mibefradil, a calcium channel blocker, and pinacidil, a potassium channel opener, on pregnant goat myometrial spontaneous rhythmic contractility and contractions induced with the agonist, oxytocin. Longitudinal strips from the distal region of uterus, collected from goats at midgestation, were mounted in an organ bath for recording isometric contractions. Mibefradil (10(-8)-10(-4) M) or pinacidil (10(-10)-10(-4) M), added cumulatively to the bath at an increment of 1 log unit, caused concentration-dependent inhibition of the spontaneous rhythmic contractions of isolated uterine strips. The rhythmic contraction was, respectively, abolished at 100 and 10 microM concentrations of mibefradil and pinacidil. In a concentration-dependent manner, mibefradil (1 and 10 microM) antagonized the contractions elicited with oxytocin (10(-5)-10(-2) IU). Pretreatment of uterine strips with glibenclamide (10 microM), a selective KATP channel blocker, caused a rightward shift of the concentration-response curve of pinacidil with a concomitant decrease in its pD2 value. Pinacidil (0.3, 1 and 3 microM), in a concentration-related manner, antagonized the oxytocin (10(-5)-10(-2) IU)-induced contractile response. The inhibition of spontaneous rhythmic contractions and antagonism of oxytocin-induced contraction by mibefradil in the pregnant goat myometrium may be related to the antagonism of voltage-dependent Ca2+ channels, while by pinacidil suggests that KATP channel could be a therapeutic target for tocolysis.  相似文献   

20.
Immune activation is implicated in the etiology of preterm labor, but little is known about macrophage number or distribution in the uterus or cervix at term. This study tested the hypothesis that macrophages migrate into the reproductive tract before the onset of parturition. Paraffin-embedded sections from the mid-uterine horn and cervix of C3/HeN mice on Days 15 and 18 of pregnancy, the day of birth (Day 19), and 1 day postpartum were stained with a pan-macrophage marker to analyze cell numbers and distribution. During pregnancy, uterine macrophages were dispersed in endometrium, usually associated with vasculature and subluminal epithelium. In myometrium, macrophages were clustered in stromal connective tissue; near term and postpartum, cells appeared to surround the muscle bundles. Total macrophage numbers were increased on Day 15 relative to those in nonpregnant controls, declined before birth, and increased postpartum. In the cervix, macrophages congregated in subepithelium, often perivascular or near ganglia. Macrophage numbers in the cervix peaked on Day 18, then declined to nonpregnant levels by the day after birth. Thus, macrophage numbers in the uterus were inversely related to those in the cervix. These findings raise the possibility that macrophages and their products may be involved in uterine contractility and cervical remodeling during the processes of parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号