首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Congenital atrichia is a rare form of hereditary human hair loss, characterized by the complete shedding of hair shortly after birth, together with the formation of papular lesions on the skin. Recently, we cloned the human homolog of the mouse hairless gene and identified pathogenic mutations in several families with inherited congenital atrichia. Here, we present the genomic organization of the human hairless gene (HGMW-approved symbol HR), which spans over 14 kb on chromosome 8p12 and is organized into 19 exons. In addition, we report the identification of a 22-bp deletion mutation in exon 3 of the hairless gene in a large consanguineous Arab Palestinian family from a village near Jerusalem, Israel. These findings extend the body of evidence implicating mutations in the hairless gene as an underlying cause of congenital atrichia in humans.  相似文献   

3.
Congenital atrichia is a rare autosomal recessive disorder of hair development, characterized by complete loss of hair shortly after birth. Evidence of linkage to chromosome 8p12 has been established, implicating the human homolog of the mouse hairless (hr) gene as a candidate gene. We have previously identified missense mutations in families with congenital atrichia. Here, we report the first deletion mutation (2147del C) in exon 9 of the human hairless gene leading to a frameshift and downstream premature termination codon in five Palestinian families of Arab origin. Received: 31 July 1998 / Accepted: 31 August 1998  相似文献   

4.
Complete or partial congenital absence of hair (congenital alopecia) may occur either in isolation or with associated defects. The majority of families with isolated congenital alopecia has been reported to follow an autosomal-recessive mode of inheritance (MIM 203655). As yet, no gene has been linked to isolated congenital alopecia, nor has linkage been established to a specific region of the genome. In an attempt to map the gene for the autosomal recessive form of the disorder, we have performed genetic linkage analysis on a large inbred Pakistani family in which affected persons show complete absence of hair development (universal congenital alopecia). We have analyzed individuals of this family, using >175 microsatellite polymorphic markers of the human genome. A maximum LOD score of 7.90 at a recombination fraction of 0 has been obtained with locus D8S258. Haplotype analysis of recombination events localized the disease to a 15-cM region between marker loci D8S261 and D8S1771. We have thus mapped the gene for this hereditary form of isolated congenital alopecia to a locus on chromosome 8p21-22 (ALUNC [alopecia universalis congenitalis]). This will aid future identification of the responsible gene, which will be extremely useful for the understanding of the biochemistry of hair development.  相似文献   

5.
Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5) but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2). Here, we report two mutations in the CtIP (RBBP8) gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder.  相似文献   

6.
John P  Ali G  Chishti MS  Naqvi SM  Leal SM  Ahmad W 《Human genetics》2006,118(5):665-667
Alopecia with mental retardation syndrome is a rare autosomal recessive disorder characterized clinically by total or partial alopecia and mental retardation. In an effort to understand the molecular bases of this form of alopecia syndrome, large Pakistani consanguineous kindred with multiple affected individuals has been ascertained from a remote region in Pakistan. Genome wide scan mapped the disease locus on chromosome 3q26.33–q27.3. A maximum two-point LOD score of 3.05 (θ=0.0) was obtained at marker D3S3583. Maximum multipoint LOD score exceeding 5.0, obtained with several markers, supported the linkage. Recombination events observed in affected individuals localized the disease locus between markers D3S1232 and D3S2436, spanning 11.49-cM region on chromosome 3q26.33–q27.3. Sequence analysis of a candidate gene ETS variant gene 5 from DNA samples of two affected individuals of the family revealed no mutation.  相似文献   

7.
Cytochrome c oxidase (COX) catalyzes both electron transfer from cytochrome c to molecular oxygen and the concomitant vectorial proton pumping across the inner mitochondrial membrane. Studying a large family with multiple cases of neonatal ketoacidotic comas and isolated COX deficiency, we have mapped the disease locus to chromosome 17p13.1, in a region encompassing two candidate genes involved in COX assembly-namely, SCO1 and COX10. Mutation screening revealed compound heterozygosity for SCO1 gene mutations in the patients. The mutated allele, inherited from the father, harbored a 2-bp frameshift deletion (DeltaGA; nt 363-364) resulting in both a premature stop codon and a highly unstable mRNA. The maternally inherited mutation (C520T) changed a highly conserved proline into a leucine in the protein (P174L). This proline, adjacent to the CxxxC copper-binding domain of SCO1, is likely to play a crucial role in the tridimentional structure of the domain. Interestingly, the clinical presentation of SCO1-deficient patients markedly differs from that of patients harboring mutations in other COX assembly and/or maturation genes.  相似文献   

8.
Congenital cataracts are a common major abnormality of the eye that frequently cause blindness in infants. At least one-third of all cases are familial; autosomal-dominant congenital cataract appears to be the most-common familial form in the Western world. Elsewhere, in family ADCC-3, we mapped an autosomal-dominant cataract gene to chromosome 3q21-q22, near the gene that encodes a lens-specific beaded filament protein gene, BFSP2. By sequencing the coding regions of BFSP2, we found that a deletion mutation, DeltaE233, is associated with cataracts in this family. This is the first report of an inherited cataract that is caused by a mutation in a cytoskeletal protein.  相似文献   

9.
A new mutation of the Noggin gene in a French Fybrodysplasia ossificans progressiva (FOP) family: Fibrodysplasia ossificans progressiva (FOP) is a very rare disease characterized by congenital malformation of the great toes and progressive heterotopic ossification of the muscles. We previously located a FOP gene in the 17q21-22 region and described several mutations of the noggin (NOG) gene (located in 17q22) in four FOP patients, including the G91C mutation which is transmitted dominantly in a Spanish FOP family. We describe in the present study a new mutation of the NOG gene in a French FOP family. This new mutation is a guanine to adenine change at nucleotide 283 (283G --> A) of the NOG gene, and is transmitted in the family (in the heterozygote form) by the affected mother to her two affected children. At the peptide level this mutation (A95T) substitutes an Alanine residue by a Threonine at position 95 of the Noggin protein. The Alanine mutated residue is located just adjacent to the myristoylation site of the protein, where all the mutations we described until now are located.  相似文献   

10.
Evidence of a third locus in X-linked recessive spastic paraplegia   总被引:2,自引:0,他引:2  
We have investigated a family with severe X-linked spastic paraplegia and assigned the disease locus to Xq11.2-q23 by linkage and haplotype analysis. This region harbors the gene coding for proteolipid protein, which is mutated in one of the two established forms of X-linked spastic paraplegia, i.e., SPG2. We have performed extensive mutation analysis of this gene. Our failure to detect a mutation in this family suggests a third locus in X-linked recessive spastic paraplegia. Received: 7 March 1997 / Accepted: 14 April 1997  相似文献   

11.
The fur of common rabbits is constituted of 3 types of hair differing in length and diameter while that of rex animals is essentially made up of amazingly soft down-hair. Rex short hair coat phenotypes in rabbits were shown to be controlled by three distinct loci. We focused on the "r1" mutation which segregates at a simple autosomal-recessive locus in our rabbit strains. A positional candidate gene approach was used to identify the rex gene and the corresponding mutation. The gene was primo-localized within a 40 cM region on rabbit chromosome 14 by genome scanning families of 187 rabbits in an experimental mating scheme. Then, fine mapping refined the region to 0.5 cM (Z = 78) by genotyping an additional 359 offspring for 94 microsatellites present or newly generated within the first defined interval. Comparative mapping pointed out a candidate gene in this 700 kb region, namely LIPH (Lipase Member H). In humans, several mutations in this major gene cause alopecia, hair loss phenotypes. The rabbit gene structure was established and a deletion of a single nucleotide was found in LIPH exon 9 of rex rabbits (1362delA). This mutation results in a frameshift and introduces a premature stop codon potentially shortening the protein by 19 amino acids. The association between this deletion and the rex phenotype was complete, as determined by its presence in our rabbit families and among a panel of 60 rex and its absence in all 60 non-rex rabbits. This strongly suggests that this deletion, in a homozygous state, is responsible for the rex phenotype in rabbits.  相似文献   

12.
Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease. It is inherited as an X-linked recessive trait in which males show clinical manifestations. In some rare cases, the disease can also be manifested in females. The aim of the present study was to determine the molecular alteration in two cases of nonrelated DMD symptomatic carriers with no previous history of DMD. Multiplex PCR is commonly used to search for deletion in the DMD gene of affected males. This method could not be used in females because the normal X chromosome masks the deletion of the mutated one. Therefore, we used a set of seven highly polymorphic dinucleotide (CA)(n) repeat markers that lie within the human dystrophin gene. The deletions were evidenced by hemizygosity of the loci under study. We localized a deletion in the locus 7A (intron 7) on the maternal X chromosome in one case, and a deletion in the region of introns 49 and 50 on the paternal X chromosome in the other. The use of microsatellite genotyping within the DMD gene enables the detection of the mutant allele in female carriers. It is also a useful method to provide DMD families with more accurate genetic counseling.  相似文献   

13.
14.
Summary Tyrosinemia II is an autosomal-recessively inherited condition caused by deficiency in the liver-specific enzyme tyrosine aminotransferase (TAT; EC 2.6.1.5). We have restudied a patient with typical symptoms of tyrosinemia II who in addition suffers from multiple congenital anomalies including severe mental retardation. Southern blot analysis using a human TAT cDNA probe revealed a complete deletion of both TAT alleles in the patient. Molecular and cytogenetic analysis of the patient and his family showed one deletion to be maternally inherited, extending over at least 27 kb and including the complete TAT structural gene, whereas loss of the second TAT allele results from a small de novo interstitial deletion, del 16 (pterq22.1::q22.3qter), in the paternally inherited chromosome 16. Three additional loci previously assigned to 16q22 were studied in our patient: haptoglobin (HP), lecithin: cholesterol acyltransferase (LCAT), and the metallothionein gene cluster MT1, MT2. Of these three markers, only the HP locus was found to be codeleted with the TAT locus on the del(16) chromosome.  相似文献   

15.
Hypotrichosis of Marie Unna (MU) is an autosomal dominant hair-loss disorder with onset in childhood. A genomewide search for the gene was performed in a large Dutch family using 400 fluorescent microsatellite markers. Linkage was detected with marker D8S258, and analysis of this family and a further British kindred with additional markers in the region gave a combined maximum two-point LOD score of 13.42, with D8S560. Informative recombinants placed the MU gene in a 2.4-cM interval between markers D8S258 and D8S298. Recently, recessive mutations in the hr gene were reported in families with congenital atrichia, and this gene was previously mapped close to the MU interval. By radiation-hybrid mapping, we placed the hr gene close to D8S298 but were unable to exclude it from the MU interval. This, with the existence of the semidominant murine hr allele, prompted us to perform mutation analysis for this gene. Full-length sequencing of hr cDNA obtained from an affected individual showed no mutations. Similarly, screening of all exons of the hr gene amplified from the genomic DNA of an affected individual revealed no mutations. Analysis of expressed sequences and positional cloning of the MU locus is underway.  相似文献   

16.
Hair follicle cycling is a highly regulated and dynamic cellular process consisting of phases of growth, regression, and quiescence. The hairless (hr) gene encodes a nuclear factor that is highly expressed in the skin, where it appears to be an essential regulator during the regression in the catagen hair follicle. In hairless mice, as well as humans with congenital atrichia, the absence of hr protein initiates a premature and abnormal catagen due to defects in the signaling required for hair follicle remodeling. Here, we report that hr protein is a nuclear protein that is tightly associated with the nuclear matrix scaffold. Using a series of deletion constructs of the mouse hr gene, we monitored the sub-cellular localization of the recombinant protein by in situ immunolocalization and biochemical fractionation after nuclear matrix extraction of transiently transfected cells. We identified a novel nuclear matrix-targeting signal (NMTS) in the hr protein and mapped the domain to amino acid residues 111-186 of the mouse hr sequence. Furthermore, we provide evidence that this region not only mediates the interaction of hr with components of the nuclear architecture, but also specifies the sub-nuclear location of the hr protein to nuclear domains containing deacetylase activity. The N-terminal region directs hr to a speckled nuclear pattern that co-localizes with the histone deacetylase 3 (HDAC), but not with HDAC1 or HDAC7. Based on our findings, we propose that hr protein is part of a specific multi-protein repressor complex and that hr may be involved in chromatin remodeling.  相似文献   

17.
The JmjC-domain-containing protein Hairless (HR) and the vitamin D receptor (VDR) play a critical role in the maintenance of hair growth. Mutations in HR or VDR cause alopecia in humans and mice. Here we show that HR interacts with VDR and induces VDR relocalization in the nuclei. HR associates and colocalizes with nuclear receptor co-repressor (N-CoR) which is localized to subnuclear structures termed matrix-associated deacetylase (MAD) bodies. It is found that the HR mutants (C622G, N970S, D1012N, V1136D), associated with alopecia universalis congenita (AUC) or atrichia with papular lesions (APL), exhibit an abnormal subcellular distribution in addition to the impaired co-repressor activity with VDR. Studies on deletion mutants of HR indicate that the JmjC domain contributes to the co-repressor activity of HR. Our work provides new clues and evidence for the understanding on the role of HR in hair growth.  相似文献   

18.
The Huntington disease (HD) mutation has been localized to human chromosome 4p16, in a 6-Mb region between the D4S10 locus and the 4p telomere. In a report by Robbins et al., a family was identified in which an affected individual failed to inherit three alleles within the 6-Mb region originating from the parental HD chromosome. To explain these results, it was suggested that the HD locus (HD) lies close to the telomere and that a recombination event took place between HD and the most telomeric marker examined, D4S90. As a test of this telomere hypothesis, we examined six members of this family, five of whom are affected with HD, for the segregation of 12 polymorphic markers from 4p16, including D4S169, which lies within 80 kb of the 4p telomere. We separated, in somatic cell hybrids, the chromosomes 4 from each family member, to determine the phase of marker alleles on each chromosome. We excluded nonpaternity by performing DNA fingerprint analyses on all six family members, and we found no evidence for chromosomal rearrangements when we used high-resolution karyotype analysis. We found that two affected siblings, including one of the patients originally described by Robbins et al., inherited alleles from the non-HD chromosome 4 of their affected parents, throughout the 6-Mb region. We found that a third affected sibling, also studied by Robbins et al., inherited alleles from the HD chromosome 4 of the affected parent, throughout the 6-Mb region. Finally, we found that a fourth sibling, who is likely affected with HD, has both a recombination event within the 6-Mb region and an additional recombination event in a more centromeric region of the short arm of chromosome 4. Our results argue against a telomeric location for HD and suggest that the HD mutation in this family is either associated with DNA predisposed to double recombination and/or gene conversion within the 6-Mb region or is in a gene that is outside this region and that is different from that mutated in most other families with HD.  相似文献   

19.
20.
Enlarged vestibular aqueduct (EVA), known as the most common form of inner ear abnormality, has recently been of particular genetic interest because this anomaly is inherited in a recessive manner. The locus for non-syndromic sensorineural hearing loss with EVA has been mapped to the same chromosomal region, 7q31, as the Pendred syndrome locus. In the present study, seven mutations in the PDS gene (PDS), the gene responsible for Pendred syndrome, have been found in families of non-syndromic sensorineural hearing loss with EVA. One family is homozygous, three families are compound heterozygotes, and two families are heterozygous but with no other mutation detected. The present results provide evidence that mutations in PDS cause both syndromic and non-syndromic hearing loss. Received: 21 October 1998 / Accepted: 5 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号