首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Factors affecting the balance between pro- and antioxidant effects of ascorbic acid and glutathione were studied in soybean phosphatidylcholine liposomes challenged with Fe2+/H2O2. Effective antioxidant protection by alpha-tocopherol appeared to be due to efficient reaction with lipid oxy-radicals in the bilayer rather than to interception of initiating oxygen radicals. At concentrations above a threshold level of approximately 0.2 mol % (based on phospholipid content), alpha-tocopherol completely suppressed lipid oxy-radical propagation, which was measured as malondialdehyde production. Both ascorbic acid and glutathione, alone or in combination, enhanced lipid oxy-radical propagation. Alpha-Tocopherol, incorporated into liposomes at concentrations above its threshold protective level, reversed the pro-oxidant effects of 0.1-1.0 mM ascorbic acid but not those of glutathione. Ascorbic acid also prevented alpha-tocopherol depletion. The combination of ascorbic acid and subthreshold levels of alpha-tocopherol only temporarily suppressed lipid oxy-radical propagation and did not maintain the alpha-tocopherol level. Glutathione antagonized the antioxidant action of the alpha-tocopherol/ascorbic acid combination regardless of alpha-tocopherol concentration. These observations indicate that membrane alpha-tocopherol status can control the balance between pro- and antioxidant effects of ascorbic acid. The data also provide the most direct evidence to date that ascorbic acid interacts directly with components of the phospholipid bilayer.  相似文献   

2.
Military antishock trousers (MAST) inflated to 50 mmHg were used with 12 healthy males (mean age 28 +/- 1 yr) to determine the effects of lower-body positive pressure on cardiac output (Q), stroke volume (SV), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), total peripheral resistance (TPR), and O2 uptake (VO2) during graded arm-cranking exercise. Subjects were studied while standing at rest and at 25, 50, and 75% of maximal arm-cranking VO2. At each level, rest or work was continued for 6 min with MAST inflated and for 6 min with MAST deflated. Order of inflation and deflation was alternated at each experimental rest or exercise level. Measurements were obtained during the last 2 min at each level. Repeated-measures analysis of variance revealed significant increases (P less than 0.001) in Q, SV, and MABP and a consistent decrease in HR with MAST inflation. There was no apparent change in Q/VO2 between inflated and control conditions. There was no effect of MAST inflation on VO2 or TPR. MAST inflation counteracts the gravitational effect of venous return in upright exercise, restoring central blood volume and thereby increasing Q and MABP from control. HR is decreased consequent to increased MABP through arterial baroreflexes. The associated decrease in TPR is not observed, being offset by the mechanical compression of leg vasculature with MAST inflation.  相似文献   

3.
为了优化建立火棘多糖铁(Ⅲ)复合物(PPC)中铁含量检测的方法。考察了邻菲啰啉溶液浓度(w/w,%)及用量(mL)、抗坏血酸溶液浓度(w/w,%)及用量(mL)、反应时间(h)及温度(℃)等因素对PPC中铁含量测定的影响。在单因素实验的基础上,运用响应面软件进一步优化PPC的检测条件。结果表明,PPC中铁含量的最佳检测条件为:向1.0 mL适宜浓度的PPC溶液中,依次加入1.5 mL 10%的抗坏血酸溶液及3.0 mL 0.1%的邻菲啰啉溶液,于45℃水浴2.0 h后,冰水快速冷却,在室温下于510 nm波长处测其吸光度。该方法具有良好的重复性及重现性,回收率达99.93%。此方法也适合推广于其他植物多糖铁复合物中铁含量的测定。  相似文献   

4.
Kawai K  Ito H  Kubota H  Takemori K  Makino S  Horio F 《Life sciences》2003,72(15):1717-1732
We have previously reported the establishment of a novel rat strain, SHR-od, with both spontaneous hypertension and a defect of ascorbic acid biosynthesis. Blood pressure in mature SHR-od fed an ascorbic acid-supplemented diet is over 190-200 mmHg, while it decreased to around 120 mmHg at 4-5 weeks after the cessation of ascorbic acid supplementation. With regard to possible mechanisms of blood pressure lowering, we focused on catecholamine synthesis in adrenal glands, since catecholamine is a major factor for blood pressure regulation and ascorbic acid is a co-factor of dopamine beta-hydroxylase (DBH) in catecholamine biosynthesis. Male SHR-od (25-week-old) and normotensive ODS rats with a defect in ascorbic acid biosynthesis (25-week-old) were fed a Funabashi-SP diet with or without ascorbic acid (300 mg/kg diet) for 28 days or 35 days. In SHR-od, systolic blood pressure (191 +/- 6 mmHg) began to decrease from day 21 in the ascorbic acid-deficient group, whereas no significant difference was found in ODS rats. In spite of significant lowering of blood pressure, no significant differences were found in catecholamine levels in serum, adrenal glands and brain on day 28. On day 35, however, urinary excretion of norepinephrine and epinephrine in the ascorbic acid-deficient SHR-od were higher at 490% (P < 0.05) and 460% (P < 0.05) of the respective control. Serum catecholamine concentrations and the adrenal catecholamine content tended to be higher in the ascorbic acid-deficient SHR-od than the control of SHR-od and reached to similar level in ODS rats. The administration of ascorbic acid (intraperitoneal injection, 60 mg ascorbic acid/kg body weight, once a day) to the ascorbic acid-deficient SHR-od restored blood pressure to the range 180-190 mmHg within two days. These findings indicate that ascorbic acid deficiency affects catecholamine metabolism in the adrenal glands of SHR-od in response to blood pressure lowering, suggesting catecholamines are not involved in the mechanism for the remarkable reduction in blood pressure in response to ascorbic acid deficiency.  相似文献   

5.
We examined whether water‐immersion restraint stress (WIRS) disrupts nonenzymatic antioxidant defense systems through ascorbic acid depletion in the adrenal gland of rats. Rats were exposed to WIRS for 0.5, 1.5, 3 or 6 h. WIRS increased serum adrenocorticotropic hormone, corticosterone and glucose concentrations and adrenal corticosterone content at each time point. WIRS increased adrenal lipid peroxide content at 3 and 6 h, and the increase was twofold higher than the unstressed level at 6 h. WIRS decreased adrenal ascorbic acid content at each time point, and the decrease reached one‐third of the unstressed level at 6 h. WIRS increased adrenal reduced glutathione content at 0.5 and 6 h but reduced that content to half of the unstressed level at 6 h. WIRS increased adrenal α‐tocopherol content at 1.5 h but returned that content to the unstressed level thereafter. When rats with 6 h of WIRS was orally preadministered with l ‐ascorbic acid (250 mg/kg), WIRS‐induced changes in adrenal lipid peroxide, ascorbic acid and reduced glutathione contents were attenuated without any change in stress response. These results indicate that WIRS disrupts nonenzymatic antioxidant defense systems through rapid and continuous ascorbic acid depletion in the adrenal gland of rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
To investigate the effects of ascorbic acid deficiency on the pathogenesis of hypertension and/or its complications, we established a rat strain with both genetic hypertension and a defect of ascorbic acid biosynthesis. The od gene (L-gulono-gamma-lactone oxidase gene) of the ODS (Osteogenic Disorder Shionogi) rat, which is a rat mutant unable to synthesize ascorbic acid, was introduced into spontaneously hypertensive rats (SHR), and a novel congenic strain, SHR-od, was established. SHR-od showed scurvy when fed an ascorbic acid-free diet. Systolic blood pressure of male SHR-od began to increase at 9 weeks of age and reached 190-200 mmHg at 20 weeks of age. In 25-week-old SHR-od, ascorbic acid deficiency when fed an ascorbic acid-free diet for 6 weeks caused a remarkable reduction of blood pressure to lower than 110 mmHg. The wall to lumen ratio of the testicular artery in ascorbic acid-deficient SHR-od was lower than that of the control rats. When rats were fed a diet supplemented with ascorbic acid (300 mg/kg), ascorbic acid concentration in SHR-od was lower in the serum and liver than that in ODS rats. These results indicate that ascorbic acid could be closely related to the development of hypertension in SHR-od. We believe that SHR-od will be a useful model for experimental studies on hypertension and its complications, since all of them suffer from hypertension spontaneously and the level of ascorbic acid deficiency in these rats could be controlled at will both in concentration and duration.  相似文献   

7.
This research was aimed at evaluating the antioxidant effects of combinations of alpha lipoic acid (LA), vitamin C (VC), N-acetyl cysteine (NAC) and alpha-tocopherol (TOC) on lipid level and fatty acid composition of C. tropicalis (ATCC 13803) against hydrogen peroxide toxicity. According to the experimental results, the cell density of C. tropicalis increased significantly in NAC+LA+H2O2, NAC+TOC+ H2O2 and NAC+VC+H2O2 groups (p<0.001) at the end of 48 and 72 h incubation times. The total lipid level in H2O2 and H2O2 + antioxidant-supplemented groups was lower than that of the control group. In the fatty acid composition of C. tropicalis, the palmitic acid level was raised in the NAC group (p<0.05), whereas its level was reduced in the other supplemented groups. While the oleic acid level increased in NAC+TOC+H2O2 and NAC+VC+H2O2 (p<0.001) groups, its level slightly decreased in the H2O2 group. The linolenic acid level was low in all the supplemented groups, but linoleic acid and total mono-unsaturated fatty acid (MUFA) levels were high in these groups compared with the control group. Total polyunsaturated fatty acid level (PUFA) decreased in NAC and H2O2 groups (p<0.01), but its level increased in NAC+LA+H2O2 and NAC+TOC+H2O2 groups (respectively, p<0.01, p<0.001). Total saturated fatty acid level decreased significantly in NAC+TOC+H2O2, NAC+H2O2 and NAC+VC+H2O2 (p<0.001) groups (p<0.01), whereas total unsaturated fatty acid level increased in NAC, NAC+H2O2, NAC+LA+H2O2, NAC+TOC+H2O2 and NAC+VC+H2O2 groups. In conclusion, our data showed that the levels of total unsaturated fatty acid, MUFA and PUFA were raised with the combinations of NAC and TOC, LA and VC in C. tropicalis cells subjected to hydrogen peroxide toxicity.  相似文献   

8.
In the present study, we investigated the effects of ascorbic acid on lead-exposed developing cerebellum. Female rats were divided into the following three groups: control (distilled water), lead (0.2% lead acetate), and lead plus ascorbic acid (100 mg/kg/day, 10% solution). To evaluate the effect of lead exposure and ascorbic acid treatment accurately on the cerebellar development for the gestational period, we halted further treatment with lead and ascorbic acid in the dams after delivery of the pups. Although the ascorbic acid slightly decreased the lead level in pups, lead level was still high in the group treated with lead plus ascorbic acid group compared with the control group. The blood lead levels indicated that the ascorbic acid could facilitate both the excretion and transfer of lead from a dam to its pups via milk. At postnatal day 21, lead exposure significantly reduced the number of Purkinje cells in the cerebellar cortex of pups. Additionally, lead treatment induced degenerative changes such as reduction of glutamic acid decarboxylase (GAD67) and c-kit expressions are observed in the developing cerebellar cortex. In the cerebellum of the pups from the lead plus ascorbic acid group, reduction of the number of Purkinje cells, GAD67 expression, and c-kit immunopositivity were remarkably restored compared with the lead group. Our present results suggested that ascorbic acid treatment to lead-exposed dam exerted protective effects on the developing cerebellum against lead-induced neurotoxicity.  相似文献   

9.
Lillehoj EB  Smith FG 《Plant physiology》1966,41(10):1553-1560
Ascorbic acid oxidase activity in Myrothecium verrucaria extracts resulted in O(2) uptake exceeding 0.5 mole per mole of ascorbic acid and in CO(2) evolution. Measurement of oxidized ascorbic acid at completion of the reaction demonstrated that an average of 10% of the oxidized product disappeared. A comparison of the gas exchange data with the amount of ascorbic acid not accounted for indicated that the reaction could not be explained by independent oxidase and oxygenase systems. Chromatographic examination of the reaction mixtures identified l-threonic acid. Experiments with ascorbic acid-1-(14)C showed that C-1 was partially decarboxylated during the oxidation. Test of the fungal extracts for enzymes that might explain the deviation from expected stoichiometry showed that phenolase, glutathione reductase, cytochrome oxidase, peroxidase and oxalic decarboxylase were not involved. Addition of azide in concentrations sufficient to block catalase increased excess O(2) consumption about 65%. No enzymes were found that could directly attack oxidized ascorbic acid. H(2)O(2) accumulated during oxidation in azide-blocked systems.The O(2) excess could be explained by assuming the enzyme had peroxidative capacity on a reductant other than ascorbic acid. An intermediate of ascorbic acid oxidation appeared to function as the substrate yielding CO(2) and l-threonic acid on degradation. The increase in excess O(2) utilized in azide-blocked systems and the H(2)O(2) accumulation also were explained by the proposed scheme.Another interpretation would involve production of free radicals during ascorbic acid oxidation. Evidence for this was the ability of extracts to oxidize DPNH in the presence of ascorbic acid. Oxygen radicals formed in such reactions were considered possible agents of degradation of ascorbic acid.  相似文献   

10.
Our previous study shows that 6-O-acyl derivatives of L-ascorbic acid inhibits more markedly cell growth of mouse Ehrlich carcinoma than ascorbic acid. The present study shows that 6-O-palmitoyl ascorbic acid but not ascorbic acid prolongs the lifespan of mice into which tumors such as Meth A fibrosarcoma, MM46 mammary carcinoma, Ehrlich carcinoma and sarcoma 180 are implanted. The potentiated cytotoxicity of 6-O-palmitoyl ascorbic acid is not due to an increase in duration time of the cytotoxic action, because 6-O-palmitoyl ascorbic acid is gradually inactivated during contact with tumor cells and exhibits a similar action time curve to that of ascorbic acid as shown by clonal growth assay. Cytotoxicity of 6-O-palmitoyl ascorbic acid is markedly diminished by combined addition of catalase and superoxide dismutase (SOD), as shown by dye exclusion assay, whereas the cytotoxicity was slightly reduced by either enzyme alone but not by the specifically inactivated or heat-denatured enzymes. In contrast, cytotoxicity of ascorbic acid is abolished by catalyse but not SOD. Autooxidation of 6-O-palmitoyl ascorbic acid was not inhibited by catalase plus SOD. The results indicate that cytotoxicity of 6-O-palmitoyl ascorbic acid is attributed at least partly to both hydrogen peroxide (H2O2) and superoxide (O2-.) generated at the early stage. Cytotoxicity of 6-O-palmitoyl ascorbic acid is also appreciably attenuated by singlet oxygen (1O2) scavengers such as hydroquinone, 1,4-diazobicyclo-2,2,2-octane or sodium azide, but not by hydroxyl radical scavengers including butylated hydroxytoluene, D-mannitol, benzoic acid and ethanol. Thus, in contrast to cytotoxicity of ascorbic acid mediated entirely by H2O2 initially generated, acylated ascorbic acid produces a diversity of active oxygen species including H2O2, O2-. and other species secondarily generated via disproportion, which may be additively involved in the enhanced cytotoxic action.  相似文献   

11.
Trichiliadregeana胚轴的脱水敏感性与抗坏血酸的抗氧化作用   总被引:7,自引:0,他引:7  
以顽拗性TrichiliadregeanaSond.种子为材料,研究其胚轴的脱水敏感性与抗坏血酸的抗氧化作用。T.dregeana胚轴的脱水耐性随着脱水进程逐渐下降,50%的胚轴被脱水致死的含水量(W50)大约为0.16gH2O/gDW。在脱水过程中,胚轴的电解质渗漏速率逐渐增加,超氧物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、谷胱苷肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性下降,硫代巴比妥酸(TBA)-活性产物的含量增加。2.5~10.0mmol/L抗坏血酸处理能有效地增加胚轴的脱水耐性和SOD、APX、CAT和GR的活性,降低电解质渗漏速率和TBA活性产物的含量。结果表明,T.dregeana胚轴的脱水耐性与抗氧化酶的活性增加和脂质过氧化作用的降低密切相关。  相似文献   

12.
Many constituents present in the human diet may inhibit endogenous formation of N-nitroso compounds (NOC). Studies with human volunteers showed inhibiting effects of intake of ascorbic acid and green tea consumption on nitrosation using the N-nitrosoproline test. The aim of the present study was to evaluate the effects of ascorbic acid and green tea on urinary excretion of carcinogenic N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine (NPIP) in humans. Twenty-five healthy female volunteers consumed a fish meal rich in amines as nitrosatable precursors in combination with intake of nitrate-containing drinking water at the Acceptable Daily Intake level during 7 consecutive days. During 1 week before and after nitrate intake a diet low in nitrate was consumed. Using the same protocol, the effect of two different doses of ascorbic acid (250 mg and 1 g/day) and two different doses of green tea (2 g and 4 g/day) on formation of NDMA and NPIP was studied. Mean nitrate excretion in urine significantly increased from control (76+/-24) to 167+/-25 mg/24 h. Intake of nitrate and fish resulted in a significant increase in mean urinary excretion of NDMA compared with the control weeks: 871+/-430 and 640+/-277 ng/24 h during days 1-3 and 4-7, respectively, compared with 385+/-196 ng/24 h (p<0.0002). Excretion of NPIP in urine was not related to nitrate intake and composition of the diet. Intake of 250 mg and 1 g of ascorbic acid per day resulted in a significant decrease in urinary NDMA excretion during days 4-7 (p=0.0001), but not during days 1-3. Also, consumption of four cups of green tea per day (2 g) significantly decreased excretion of NDMA during days 4-7 (p=0.0035), but not during days 1-3. Surprisingly, consumption of eight cups of green tea per day (4 g) significantly increased NDMA excretion during days 4-7 (p=0.0001), again not during days 1-3. This increase is probably a result of catalytic effects of tea polyphenols on nitrosation, or of another, yet unknown, mechanism. These results suggest that intake of ascorbic acid and moderate consumption of green tea can reduce endogenous NDMA formation.  相似文献   

13.
Baker's yeast suspensions were incubated at different pressures (from 1 bar to 6 bar) and different gases [air, O(2) and a mixture of 8% (v/v) CO(2), 21% O(2) and N(2)]. Raising the air pressure from 1 bar to 6 bar stimulated cell growth but had no effect on leavening ability or viability of the cells. A 50% reduction of the CO(2) produced in dough occurred with 6 bar O(2) which also stopped growth. The fermentative capacity of the cells was stimulated by the cells exposure to increased CO(2) partial pressure up to 0.48 bar.  相似文献   

14.
Sterilization of ginseng using a high pressure CO2 at moderate temperatures   总被引:1,自引:0,他引:1  
The aim of this study was to determine the feasibility of using high pressure CO2 for sterilization of Ginseng powder, as an alternative method to conventional techniques such as gamma-irradiation and ethylene oxide. The Ginseng sample used in this study was originally contaminated with fungi and 5 x 10(7) bacteria/g that was not suitable for oral use. This is the first time that high pressure CO2 has been used for the sterilization of herbal medicine to decrease the total aerobic microbial count (TAMC) and fungi. The effect of the process duration, operating pressure, temperature, and amount of additives on the sterilization efficiency of high pressure CO2 were investigated. The process duration was varied over 15 h; the pressure between 100 and 200 bar and the temperature between 25 and 75 degrees C. A 2.67-log reduction of bacteria in the Ginseng sample was achieved after long treatment time of 15 h at 60 degrees C and 100 bar, when using neat carbon dioxide. However, the addition of a small quantity of water/ethanol/H2O2 mixture, as low as 0.02 mL of each additive/g Ginseng powder, was sufficient for complete inactivation of fungi within 6 h at 60 degrees C and 100 bar. At these conditions the bacterial count was decreased from 5 x 10(7) to 2.0 x 10(3) TAMC/g complying with the TGA standard for orally ingested products. A 4.3 log reduction in bacteria was achieved at 150 bar and 30 degrees C, decreasing the TAMC in Ginseng sample to 2,000, below the allowable limit. However, fungi still remained in the sample. The complete inactivation of both bacteria and fungi was achieved within 2 h at 30 degrees C and 170 bar using 0.1 mL of each additive/g Ginseng. Microbial inactivation at this low temperature opens an avenue for the sterilization of many thermally labile pharmaceutical and food products that may involve sensitive compounds to gamma-radiation and chemically reactive antiseptic agents.  相似文献   

15.
Brain concentrations of the antioxidant vitamins C and E decreased following unilateral carotid occlusion and reperfusion for 2 or 24 h in gerbils. Administration of the 21-aminosteroid inhibitor of lipid peroxidation, tirilazad mesylate (U74006F), prevented the decrease in level of both of these vitamins following 2 h of reperfusion. After 24 h of reperfusion, however, alpha-tocopherol (vitamin E) continued to be protected, but ascorbic acid (vitamin C) showed a pronounced decrease in content. The changes in concentrations of these vitamins are consistent with U74006F acting to inhibit peroxidation in the CNS by scavenging of lipid peroxyl radicals and suggest that, in the presence of this agent, injury-induced depletion of ascorbic acid may occur without irreversible tissue damage.  相似文献   

16.
臭氧浓度升高对油松抗氧化系统活性的影响   总被引:4,自引:0,他引:4  
以生长在开顶箱内的油松为试材,对高浓度臭氧(80 nmol·mol-1)条件下油松(Pinus tabulaeformis)针叶中超氧阴离子自由基(O2·)产生速率、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性与抗坏血酸(ASA)含量进行测定.结果表明:高浓度臭氧使O2·产生速率提高,H2O2 和MDA含量增加.ASA含量与SOD、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性在高浓度臭氧熏蒸的前期升高,随后下降并低于对照.说明生长季前期,油松抗氧化系统对高浓度臭氧存在适应性反应,但不能抵抗长期臭氧胁迫带来的氧化伤害.  相似文献   

17.
Loss of Ascorbic Acid from Injured Feline Spinal Cord   总被引:2,自引:2,他引:2  
Feline spinal cord contains 0.97 mM ascorbic acid, as measured by the dinitrophenylhydrazine method. Greater than 90% is maintained in the reduced form. When functioning normally, the CNS conserves its ascorbic acid with a turnover rate of 2% per h. Following contusion injury severe enough to produce paraplegia, ascorbic acid is rapidly lost from injured spinal tissue. Thus, ascorbic acid is decreased 30% by 1 h and 50% by 3 h following injury. Oxidized ascorbic acid is increased at 1, but not 3, h following impact. As a consequence of its many functions in CNS, loss of ascorbic acid may contribute to derangements in spinal cord function following injury.  相似文献   

18.
Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress   总被引:12,自引:0,他引:12  
The role of plant antioxidant systems in stress tolerance was studied in leaves of three contrasting wheat genotypes. Drought imposed at two different stages after anthesis resulted in an increase in H2O2 accumulation and lipid peroxidation and decrease in ascorbic acid content. Antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and catalase significantly increased under water stress. Drought tolerant genotype C 306 which had highest ascorbate peroxidase and catalase activity and ascorbic acid content also showed lowest H2O2 accumulation and lipid peroxidation (malondialdehyde content) under water stress in comparison to susceptible genotype HD 2329 which showed lowest antioxidant enzyme activity and ascorbic acid content and highest H2O2 content and lipid peroxidation. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Superoxide dismutase activity, however, did not show significant differences among the genotypes under irrigated as well as water stress condition. It seems that H2O2 scavenging systems as represented by ascorbate peroxidase and catalase are more important in imparting tolerance against drought induced oxidative stress than superoxide dismutase alone. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Aqueous solutions of molecular oxygen, per se, or in combination with either pyrogallol or 6-azauracil increased tumorigenesis in Nicotiana suaveolens X Nicotiana langsdorffii seedlings relative to control seedlings. The biological activities of the organic chemicals were O2-dependent, because the substitution of N2 or O2 or the degassing of 0.1-1 mM solutions of the compounds eliminated or greatly reduced their tumorigenic effects. Rates of tumorigenesis exceeded 95% for 0.5 mM solutions of either pyrogallol or 6-azauracil solutions in the presence of l mM O2. Although tumors developed in 20% of seedlings in the presence of 1 mM O2, alone, 4-5 times more tumors were induced by the organic chemical--O2-H2O systems. Dinitrophenol and ascorbic acid, compounds which affect cellular respiration or redox systems, strongly inhibited the chemically-mediated tumorigenesis. Dinitrophenol was equally effective at one-tenth of the molar concentrations of ascorbic acid that were required for the suppressions of oncogenesis. Dehydroascorbic acid was much less inhibitory than ascorbic acid.  相似文献   

20.
beta-Carotene, alpha-tocopherol, and ascorbic acid were tested for their ability to inhibit, enhance, or react synergistically with O(2) (15, 150, 760 torr) and, 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) or 1,1'-azobis (cyclohexane-carbonitrile) (ACCN) in isolated rat liver microsomes. beta-Carotene did not protect against lipid peroxidation, i.e., malondialdehyde (MDA) formation, in microsomal samples incubated at 37 degrees C with aqueous soluble AAPH at all added beta-carotene concentrations and oxygen tensions. More MDA (16%, p < 0.001) was produced at 15 torr of O(2,) and 160 nmol/mg protein of beta-carotene compared to respective vehicle control. Individually, alpha-tocopherol and ascorbic acid exhibited antioxidant protection (ascorbic acid &z.Gt; alpha-tocopherol); however, a mixture of both compounds was no more protective than ascorbic acid alone. beta-Carotene demonstrated a concentration-dependent antioxidant affect at 15 torr O(2) (p < 0.01); but a prooxidant effect at higher O(2) at 150 and 760 torr (>57%, p < 0.001) by lipid-soluble ACCN. alpha-Tocopherol exhibited concentration-dependent inhibitory effects on microsomal MDA formation at all oxygen tensions, but was most effective under 150 torr. Ascorbic acid demonstrated a concentration-dependent antioxidant effect only at 150 torr. ACCN-induced lipid peroxidation was no greater for the combination of the three compounds than ascorbic acid added alone. Thus, antioxidant or prooxidant activities for beta-carotene, alpha-tocopherol, and ascorbic acid in microsomal suspensions are related to O(2) tension, solubility, antioxidant concentrations and are governed by complex interactions. Differences between AAPH- and ACCN-induced lipid peroxidation are related to differences in lipid solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号