首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013  相似文献   

2.
  总被引:1,自引:0,他引:1  
The slow down in enzymatic hydrolysis of cellulose with conversion has often been attributed to declining reactivity of the substrate as the more easily reacted material is thought to be consumed preferentially. To better understand the cause of this phenomenon, the enzymatic reaction of the nearly pure cellulose in Avicel was interrupted over the course of nearly complete hydrolysis. Then, the solids were treated with proteinase to degrade the cellulase enzymes remaining on the solid surface, followed by proteinase inhibitors to inactive the proteinase and successive washing with water, 1.0 M NaCl solution, and water. Next, fresh cellulase and buffer were added to the solids to restart hydrolysis. The rate of cellulose hydrolysis, expressed as a percent of substrate remaining at that time, was approximately constant over a wide range of conversions for restart experiments but declined continually with conversion for uninterrupted hydrolysis. Furthermore, the cellulose hydrolysis rate per adsorbed enzyme was approximately constant for the restart procedure but declined with conversion when enzymes were left to react. Thus, the drop off in reaction rate for uninterrupted cellulose digestion by enzymes could not be attributed to changes in substrate reactivity, suggesting that other effects such as enzymes getting \"stuck\" or otherwise slowing down may be responsible.  相似文献   

3.
    
Ionic liquids (ILs) have been increasingly recognized as novel solvents for dissolution and pretreatment of cellulose. However, cellulases are inactivated in the presence of ILs, even when present at low concentrations. To more fully exploit the benefits of ILs it is critical to develop a compatible IL‐cellulases system in which the IL is able to effectively solubilize and activate the lignocellulosic biomass, and the cellulases possess high stability and activity. In this study, we investigated the stability and activity of a commercially available cellulases mixture in the presence of different concentrations of 1‐ethyl‐3‐methylimidazolium acetate ([Emim][OAc]). A mixture of cellulases and β‐glucosidase (Celluclast1.5L, from Trichoderma reesei, and Novozyme188, from Aspergillus niger, respectively) retained 77% and 65% of its original activity after being pre‐incubated in 15% and 20% (w/v) IL solutions, respectively, at 50°C for 3 h. The cellulases mixture also retained high activity in 15% [Emim][OAc] to hydrolyze Avicel, a model substrate for cellulose analysis, with conversion efficiency of approximately 91%. Notably, the presence of different amounts of yellow poplar lignin did not interfere significantly with the enzymatic hydrolysis of Avicel. Using this IL‐cellulase system (15% [Emim][OAc]), the saccharification of yellow poplar biomass was also significantly improved (33%) compared to the untreated control (3%) during the first hour of enzymatic hydrolysis. Together, these findings provide compelling evidence that [Emim][OAc] was compatible with the cellulase mixture, and this compatible IL‐cellulases system is promising for efficient activation and hydrolysis of native biomass to produce biofuels and co‐products from the individual biomass components. Bioeng. 2011; 108:1042–1048. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
    
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were also carried out using an in situ UV-Vis spectrophotometric technique. The cellulose accessibilities measured by the solute exclusion and a cellulose-binding module (CBM)-containing green fluorescent protein (TGC) adsorption methods correlate well for both sets of samples. The substrate enzymatic digestibilities (SEDs) of the hornified substrates are proportional to the measured cellulose accessibilities. Approximately over 90% of the SED was contributed by the accessible pore surfaces of the hornified substrates, suggesting that the substrate external surface plays a minor role contributing to cellulose accessibility and SED. The cellulose accessibilities of the pretreated substrates correlated well with the amounts of cellulase adsorbed. The SEDs of these substrates directly correlated with the amounts of adsorbed cellulase.  相似文献   

5.
    
Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35°C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35°C. There was no significant accumulation (<250 μg) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35°C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.  相似文献   

6.
    
Understanding the depolymerization mechanisms of cellulosic substrates by cellulase cocktails is a critical step towards optimizing the production of monosaccharides from biomass. The Spezyme CP cellulase cocktail combined with the Novo 188 β‐glucosidase blend was used to depolymerize bacterial microcrystalline cellulose (BMCC), which was immobilized on a glass surface. The enzyme mixture was supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A, which served as a reporter to track cellulase binding onto the physical structure of the cellulosic substrate. Both micro‐scale imaging and bulk experiments were conducted. All reported experiments were conducted at 50°C, the optimal temperature for maximum hydrolytic activity of the enzyme cocktail. BMCC structure was observed throughout degradation by labeling it with a fluorescent dye. This method allowed us to measure the binding of cellulases in situ and follow the temporal morphological changes of cellulose during its depolymerization by a commercial cellulase mixture. Three kinetic models were developed and fitted to fluorescence intensity data obtained through confocal microscopy: irreversible and reversible binding models, and an instantaneous binding model. The models were successfully used to predict the soluble sugar concentrations that were liberated from BMCC in bulk experiments. Comparing binding and kinetic parameters from models with different assumptions to previously reported constants in the literature led us to conclude that exposing new binding sites is an important rate‐limiting step in the hydrolysis of crystalline cellulose. Biotechnol. Bioeng. 2013; 110: 108–117. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
裂褶菌纤维二糖脱氢酶吸附纤维素性质   总被引:5,自引:0,他引:5  
纤维二糖脱氢酶(CDH)可以吸附棉花、微晶纤维素和酸处理纤维素,4min便都达到平衡。与纤维素酶明显不同,该酶的Scatchard吸附曲线都是一条直线,为典型的单结合位点模型(one-binding-site model)。观察到pH值、温度、乙二醇和NaCl对CDH吸附微昌纤维素有影响,并进行了讨论。  相似文献   

8.
Effect of surfactants on cellulose hydrolysis   总被引:14,自引:0,他引:14  
The effect of surfactants on the heterogeneous enzymatic hydrolysis of Sigmacell 100 cellulose and of steam-exploded wood was studied. Certain biosurfactants (sophorolipid, rhamnolipid, bacitracin) and Tween 80 increased the rate of hydrolysis of Sigmacell 100, as measured by the amount of reducing sugar produced, by as much as seven times. The hydrolysis of steam-exploded wood was increased by 67% in the presence of sophorolipid. At the same time, sophorolipid was found to decrease the amount of enzyme adsorbed onto the cellulose at equilibrium. Sophorolipid had the greatest effect on cellulose hydrolysis when it was present from the beginning of the experiment and when the enzyme/cellulose ratio was low. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
比较了自产纤维素酶和商品纤维素酶的水解效果,并采用超滤、层析、SDS-PAGE相结合的方法分析2种纤维素酶蛋白组分的差异。里氏木霉以纸浆为C源合成的自产纤维素酶的水解得率高于商品纤维素酶,自产纤维素酶水解48h的得率为66.24%,商品纤维素酶的得率为52.19%。自产纤维素酶中存在着Cel6A酶组分和XYNⅡ酶组分,而商品纤维素酶中没有检测到这2种酶组分。自产纤维素酶和商品纤维素酶的Cel1A酶组分和Cel7A酶组分间存在着分布和含量上的差异。自产纤维素酶在相对分子质量(2.5~3.5)×104范围内存在着几条蛋白条带,而商品纤维素酶则是在相对分子质量3.5×104附近存在着几条蛋白条带。  相似文献   

10.
纤维素是地球上最古老、最丰富的天然高分子,是天然可再生资源。纤维素酶广泛存在于自然界的生物体中,细菌、真菌和动物体内都能产生纤维素酶。微生物产纤维素酶已有较多报道,并在食品、医药、饲料、洗涤、纺织和造纸工业等领域有广阔的应用前景。海洋是一个巨大的资源库,海洋微生物产纤维素酶已经受到了广泛的关注。对产纤维素酶海洋微生物的种群、来源及基因筛选、海洋微生物产纤维素酶的酶学特性,以及纤维素酶的应用领域等方面的研究进展进行了简要综述,并对海洋微生物产纤维素酶的研究进行了展望。  相似文献   

11.
Abstract

A little over a year ago the author edited a textbook on alcohol production and titled it “Gasohol – Fuel Alcohol A Step to Energy Independence”.1 Many changes have occurred since the concept for the textbook originated amidst the great euphoria of interest in alcohol in 1979 and 1980. It is, hence, very appropriate to perhaps review what has happened in the interim period.  相似文献   

12.
超临界CO2流体对纤维素酶催化反应的影响   总被引:4,自引:0,他引:4  
超临界二氧化碳流体预处理对纤维素超分子结构及纤维素酶催化反应有重要影响。一定含水量的微晶纤维素用SC-CO2在10MPa,50℃处理30min,其结构发生了有利于进一步被酶解的变化。上述超临界条件单独作用于纤维素酶时,并未造成酶催化活力的降低;但与纤维素共同进行SC—CO2处理时,纤维素酶则失去催化活性,但这种处理却能提高纤维素进一步被酶解的效率。一定范围内处理时的酶用量与酶解效率的增加正相关。纤维素的含水量对SC-CO2处理后的酶解效率有显影响。  相似文献   

13.
微生物纤维素酶的应用研究   总被引:57,自引:0,他引:57  
我国纤维素酶的应用研究近年来取得了很大进展。阐述了纤维素分解菌的选育 ,酶学性质以及在发酵、纺织和洗涤剂工业中的应用。  相似文献   

14.
以酶促聚合为代表的绿色高分子合成途径,以其反应条件温和、产物多分散性低、无金属催化剂残留、高度立体和区位选择性等优势,成为医用高分子材料合成领域中的研究热点。目前,氧化还原酶、水解酶、转移酶均成功应用于聚合反应,其中脂肪酶催化的缩聚反应及开环聚合反应研究最为广泛,同时,以可逆加成-断裂链转移聚合和原子转移自由基聚合为代表的酶促可逆失活自由基聚合得到了快速发展。针对酶促聚合中单体及合成产物结构与性能单一、应用范围有限等缺陷,基于酶促聚合与原子转移自由基聚合、开环易位聚合等反应的偶联,制备了多种不同结构与性能的聚合物材料,推动了上述材料在药物与基因递送领域中的应用。本文综述了脂肪酶催化聚合、酶促可逆失活自由基聚合、酶促化学偶联催化等方面的研究进展,并探讨了目前研究的局限性和未来研究方向。  相似文献   

15.
The chemical characteristics, enzymatic saccharification, and ethanol fermentation of autohydrolyzed lignocellulosic material that was exposed to steam explosion were investigated using bagasse as the sample. The effects of the steam explosion on the change in pH, organic acids production, degrees of polymerization and crystallinity of the cellulose component, and the amount of extractive components in the autohydrolyzated bagasse were examined. The steam explosion decreased the degree of polymerzation up to about 700 but increased the degree of crystallinity and the micelle width of the cellulose component in the bagasse. The steam explosion, at a pressure of 2.55 MPa for 3 mins, was the most effective for the delignification of bagasse. 40 g/L of glucose and 20 g/L of xylose were produced from 100 g/L of the autohydrolyzed bagasse by the enzymatic saccharification using mixed cellulases, acucelase and meicelase. The maximum ethanol concentration, 20 g/L, was obtained from the enzymatic hydrolyzate of 100 g/L of the autohydrolyzed bagasse by the ethanol fermentation usingPichia stipitis CBS 5773; the ethanol yield from sugars was 0.33 g/g sugars.  相似文献   

16.
    
Detailed understanding of cell wall degrading enzymes is important for their modeling and industrial applications, including in the production of biofuels. Here we used Cel9A, a processive endocellulase from Thermobifida fusca, to demonstrate that cellulases that contain a catalytic domain (CD) attached to a cellulose binding module (CBM) by a flexible linker exist in three distinct molecular states. By measuring the ability of a soluble competitor to reduce Cel9A activity on an insoluble substrate, we show that the most common state of Cel9A is bound via its CBM, but with its CD unoccupied by the insoluble substrate. These findings are relevant for kinetic modeling and microscopy studies of modular glycoside hydrolases.  相似文献   

17.
18.
利用实验室现有的纤维素酶高产菌株制备纤维素酶。考察了JFY-14菌株产酶培养过程中pH值、培养时间、氮源等条件的影响。得到了最佳产纤维素酶条件:培养时间为72~75 h,初始pH值为4.5~5.0以及最佳培养氮源为1%的硫酸铵。  相似文献   

19.
         下载免费PDF全文
Lignocellulosic materials represent a very important and promising source of renewable biomass. In order to turn them into fermentable sugars, synergism among the different enzymes that carry out bioconversion of these materials is one of the main factors that should be considered. Experimental mixture design was performed to optimize the proportion of enzymes produced by native strains of Trichoderma harzianum IOC 3844, Penicillium funiculosum ATCC 11797, and Aspergillus niger ATCC 1004, resulting in a proportion of 15, 50, and 35%, respectively. This mixture was able to hydrolyze 25 g/L of pretreated sugarcane bagasse with 91% of yield after 48 h of enzymatic reaction. Synergism along the hydrolysis process, besides the influence of lignin, hemicellulose, and solids loading, were also studied. Response surface methodology (RSM) based on Central Composite Rotatable Design was used to optimize solids and protein loadings to increase glucose release and enzymatic hydrolysis yield. The optimum solid and protein loadings established with RSM were 196 g/L and 24 mg/g cellulose, respectively, and under these conditions (94.1 ± 8) g/L of glucose were obtained, corresponding to a hydrolysis yield of 64%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1222–1229, 2016  相似文献   

20.
    
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号