共查询到20条相似文献,搜索用时 0 毫秒
1.
The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification by 34%, demonstrating a dissociation between the degradation of Ox-LDL and its ability to stimulate cholesterol esterification. Further, while LDL and Ac-LDL resulted in a 5- and 15-fold increase in cholesteryl ester accumulation, respectively, Ox-LDL caused only a 1.3-fold increase in cholesteryl ester mass. These differences could be accounted for, in part, by the reduced cholesteryl ester content of Ox-LDL. However, when endothelial cells were incubated with Ac-LDL in the presence and absence of Ox-LDL, Ox-LDL led to a dose-dependent inhibition of cholesterol esterification without affecting the degradation of Ac-LDL. This inhibitory effect of Ox-LDL on cholesteryl ester synthesis was also manifest in normal human skin fibroblasts incubated with LDL and in LDL-receptor-negative fibroblasts incubated with unesterified cholesterol to stimulate cholesterol esterification. Further, the lipid extract from Ox-LDL inhibited cholesterol esterification in LDL-receptor negative fibroblasts. These findings suggest that the inhibition of cholesterol esterification by oxidized LDL is independent of the LDL and scavenger receptors and may be a result of translocation of a lipid component of oxidatively modified LDL across the cell membrane. 相似文献
2.
Oxidation of lipids in low density lipoprotein particles 总被引:2,自引:0,他引:2
This study was undertaken to understand further the mechanisms and dynamics of the oxidation of lipids in low density lipoprotein (LDL) particles, aiming specifically at elucidating the material balance between oxygen uptake and products found and also the relative susceptibilities to oxidation of cholesteryl ester in the core and phosphatidylcholine in the outer monolayer in the LDL particles. It was found that considerable amount of oxygen uptake could not be accounted for by conjugated diene or total peroxides. Total peroxide was measured from the phosphine oxide formed from triphenylphosphine or diphenylpyrenylphosphine by reduction of peroxides. Cholesteryl ester hydroperoxides and phosphatidylcholine hydroperoxides were the major peroxides formed in LDL oxidation, but they accounted for about 60% of total peroxide. Cholesterol was also oxidized, but its oxidation was significant only at the later stages of the reaction. It was also found that the oxidizability of cholesteryl ester relative to phosphatidylcholine was larger within the LDL particle than in homogeneous solution and this was interpreted in the context of the physical properties of LDL particle. 相似文献
3.
The formation of low density lipoprotein (LDL) from very low density lipoprotein (VLDL) was studied after injecting 14C-radiomethylated or 125I-radioiodinated VLDL into rats. VLDL and LDL B apoprotein specific radioactivity time curves were obtained after tetramethylurea extraction of the lipoproteins. In all experiments, the specific activity of LDL B apoprotein did not intercept the VLDL curve at maximal heights, suggesting that not all LDL B apoprotein is derived from VLDL B apoprotein. Further subfractionation of LDL into the Sf 12-20, 5-12, and 0-5 ranges showed that most (65%) LDL B apoprotein was present in the Sf 0-5 fraction and that only a small proportion (6-15%) of this fraction was derived from VLDL. However, the curves obtained for the Sf 12-20 and 5-12 subfractions were consistent with a precursor-product relationship in which all of these fractions were derived entirely from VLDL catabolism. These results contrasted strikingly with similar data obtained for normal humans in which all LDL is derived from VLDL. In the rat, it appears that most of the B apoprotein in the Sf 0-5 range, which contains 65% of the total LDL B apoprotein, enters the plasma independently of VLDL secretion. 相似文献
4.
S N Preobrazhensky V P Tsibulsky I V Fuki V O Ivanov V S Repin V N Smirnov 《Analytical biochemistry》1986,154(2):382-387
Mouse macrophages (line J 774) were incubated with monospecific goat anti-low density lipoprotein antibodies, which were conjugated to horseradish peroxidase (AB-HRP). Addition of low density lipoprotein (LDL) modified by treatment with malondialdehyde to cultures of these cells resulted in a dose-dependent increase in the amount of cell-associated enzyme activity. The concentration curve was hyperbolic with half-saturation of modified LDL at a concentration of about 3 micrograms/ml. This effect was completely blocked by polyinosinic acid and was not observed in experiments with human fibroblasts, which do not exhibit high affinity binding sites that recognize chemically modified LDL. Our data indicate that receptor-mediated endocytosis of AB-HRP in the presence of native or modified LDL may be used as very simple, efficient, and sensitive assay for investigation of the scavenger receptors for modified LDL. 相似文献
5.
The mechanisms of vesicle budding and fusion 总被引:45,自引:0,他引:45
Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity. 相似文献
6.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production. 相似文献
7.
Inhibitory effects of vitamin E on endothelial-dependent adhesive interactions with leukocytes induced by oxidized low density lipoprotein 总被引:12,自引:0,他引:12
Yoshida N Manabe H Terasawa Y Nishimura H Enjo F Nishino H Yoshikawa T 《BioFactors (Oxford, England)》2000,13(1-4):279-288
Leukocyte-endothelial cell interactions, which are mediated by various adhesion molecules, are a crucial event in inflammatory reactions including atherosclerosis. Alpha-tocopherol (alpha-Toc) has been used for protection and therapy of vascular diseases because of its antioxidant activity. The objective of the present study was to determine effect of alpha-Toc on endothelial-dependent adhesive interactions with leukocytes elicited by oxidized low density lipoprotein (oxLDL). Incubation of HUVEC with oxLDL (100 microg/mL) increased expression of proteins and messenger RNA of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on enzyme immunoassay and northern blotting assay; pretreatment with alpha-Toc reduced in a dose dependent manner. Adherence of polymorphonuclear leukocytes (PMN) or mononuclear leukocytes (MNC) to oxLDL-activated HUVEC was much increased compared with that to unstimulated HUVEC. Treatment of HUVEC with alpha-Toc, monoclonal antibody to ICAM-1 or VCAM-1 inhibited adherence of PMN or MNC in a dose dependent manner. These results suggest that alpha-Toc works as anti-atherogenic agent through inhibiting endothelial-dependent adhesive interactions with leukocytes induced by oxLDL. 相似文献
8.
Apo HDL is a more potent inhibitor of lipoprotein lipase than native HDL. HDL reconstituted from apo HDL and vesicles made from either HDL total lipids or HDL phospholipids inhibits lipoprotein lipase in the same manner as native HDL. HDL reconstituted from apo HDL and vesicles made from phosphatidylcholine and sphingomyelin still behaves like apo HDL. 相似文献
9.
Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1 总被引:12,自引:0,他引:12
Navab M Hama SY Cooke CJ Anantharamaiah GM Chaddha M Jin L Subbanagounder G Faull KF Reddy ST Miller NE Fogelman AM 《Journal of lipid research》2000,41(9):1481-1494
Apolipoprotein A-I (apoA-I) and an apoA-I peptide mimetic removed seeding molecules from human low density lipoprotein (LDL) and rendered the LDL resistant to oxidation by human artery wall cells. The apoA-I-associated seeding molecules included hydroperoxyoctadecadienoic acid (HPODE) and hydroperoxyeicosatetraenoic acid (HPETE). LDL from mice genetically susceptible to fatty streak lesion formation was highly susceptible to oxidation by artery wall cells and was rendered resistant to oxidation after incubation with apoA-I in vitro. Injection of apoA-I (but not apoA-II or murine serum albumin) into mice rendered their LDL resistant to oxidation within 3 h. Infusion of apoA-I into humans rendered their LDL resistant to oxidation within 6 h.We conclude that 1) oxidation of LDL by artery wall cells requires seeding molecules that include HPODE and HPETE; 2) LDL from mice genetically susceptible to atherogenesis is more readily oxidized by artery wall cells; and 3) normal HDL and its components can remove or inhibit the activity of lipids in freshly isolated LDL that are required for oxidation by human artery wall cells. 相似文献
10.
Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3 总被引:12,自引:0,他引:12
Navab M Hama SY Anantharamaiah GM Hassan K Hough GP Watson AD Reddy ST Sevanian A Fonarow GC Fogelman AM 《Journal of lipid research》2000,41(9):1495-1508
Treatment of human artery wall cells with apolipoprotein A-I (apoA-I), but not apoA-II, with an apoA-I peptide mimetic, or with high density lipoprotein (HDL), or paraoxonase, rendered the cells unable to oxidize low density lipoprotein (LDL). Human aortic wall cells were found to contain 12-lipoxygenase (12-LO) protein. Transfection of the cells with antisense to 12-LO (but not sense) eliminated the 12-LO protein and prevented LDL-induced monocyte chemotactic activity. Addition of 13(S)-hydroperoxyoctadecadienoic acid [13(S)-HPODE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] dramatically enhanced the nonenzymatic oxidation of both 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and cholesteryl linoleate. On a molar basis 13(S)-HPODE and 15(S)-HPETE were approximately two orders of magnitude greater in potency than hydrogen peroxide in causing the formation of biologically active oxidized phospholipids (m/z 594, 610, and 828) from PAPC. Purified paraoxonase inhibited the biologic activity of these oxidized phospholipids. HDL from 10 of 10 normolipidemic patients with coronary artery disease, who were neither diabetic nor receiving hypolipidemic medications, failed to inhibit LDL oxidation by artery wall cells and failed to inhibit the biologic activity of oxidized PAPC, whereas HDL from 10 of 10 age- and sex-matched control subjects did.We conclude that a) mildly oxidized LDL is formed in three steps, one of which involves 12-LO and each of which can be inhibited by normal HDL, and b) HDL from at least some coronary artery disease patients with normal blood lipid levels is defective both in its ability to prevent LDL oxidation by artery wall cells and in its ability to inhibit the biologic activity of oxidized PAPC. 相似文献
11.
Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein 总被引:30,自引:0,他引:30
R C Kowal J Herz K H Weisgraber R W Mahley M S Brown J L Goldstein 《The Journal of biological chemistry》1990,265(18):10771-10779
The low density lipoprotein receptor-related protein (LRP) from rat liver membranes binds apoprotein E (apoE)-enriched rabbit beta-migrating very low density lipoproteins (beta-VLDL) in a ligand blotting assay on nitrocellulose membranes. Binding was markedly activated when the beta-VLDL was preincubated with recombinant human apoE-3, native human apoE-3 or E-4, or native rabbit apoE. Human apoE-2, which binds poorly (1-2% of apo E-3 binding) to low density lipoprotein receptors, was approximately 40% as effective as apoE-3 or apoE-4 in binding to LRP. Stimulation of apoE-dependent binding to LRP was blocked by the inclusion of a mixture of human apoC proteins, but not apoA-I or A-II, in the preincubation reaction. High concentrations of apoE did not overcome the apoC inhibition. The effects of apoE and apoC on the ligand blotting assay were paralleled by similar effects in the ability of beta-VLDL to stimulate cholesteryl ester synthesis in mutant human fibroblasts that lack low density lipoprotein receptors. These properties of LRP are consistent with the known effects of apoE and apoC on uptake of chylomicron and very low density lipoprotein remnants in the liver and raise the possibility that LRP functions as a receptor for apoE-enriched forms of these lipoproteins in intact animals. 相似文献
12.
The low density liporpotein from human serum, and derivitives prepared free of neutral lipids and total lipids, have been studied by fluorescence and circular dichorism methods. Removal of the neutral lipids had little effect on the tryptophan fluorescence at neutral pH. However, by the criteria of circular dichroism, over the range of 200 nm to 250 nm, there was a reduction in secondary structure of over 75%. Removal of the remaining phospholipids resulted in a qualitatively different structure by both fluorescence and circular dichroism criteria. Neutral lipids were removed from LDL in a step-wise fashion in order to determine the exact amount of neutral lipid required for the native circular dichroism spectrum. The circular dichroism band intensity was constant until approximately 10% of the total cholesterol (as cholesterol ester) remained. The intensity then abruptly dropped as more cholesterol was removed. We concluded that the two spectroscopic methods report on two distinct aspects of LDL structure. The tryptophan fluorescence appears to be sensitive to the presence of phospholipids. The circular dichroism, however, appears to be sensitive to the binding of a small amount of neutral lipid. These findings suggest that a functional and geometric separation of binding sites may exist for these two classes of lipids. Such a distinction is predicted by the icosohedral model of the quaternary structure of LDL. In this model, the phospholipids are located on the surface of the particle, in the holes of an icosohedrally symmetric surface network of protein subunits; the neutral lipids are located in the particle core. Finally, we suggest that functional significance may be attached to our finding that relatively few cholesterol ester molecles are needed to maintain the native secondary structure of LDL. This provides a mechanism whereby the amount of bound neutral lipid could be raised or lowered (for transport and transfer to cells) without affecting the protein in any structurally significant manner. 相似文献
13.
Incubation of human high density lipoprotein (HDL) particles (density = 1.063-1.21 g/ml) with catalytic amounts of Manduca sexta lipid transfer particle (LTP) resulted in alteration of the density distribution of HDL protein such that the original HDL particles were transformed into new particles with an equilibrium density = 1.05 g/ml. Concomitantly, substantial amounts of protein were recovered in the bottom fraction of the density gradient. The LTP-induced alteration in HDL protein density distribution was dependent on the LTP concentration and incubation time. Electrophoretic analysis revealed that the lower density fraction contained apolipoprotein A-II (apoA-II) as the major apoprotein component while nearly all of the apoA-I was recovered in the bottom fraction. Lipid analysis of the HDL substrate and product fractions revealed that the apoA-I-rich fraction was nearly devoid of lipid (less than 1%, w/w). The lipid originally associated with HDL was recovered in the low density, apoA-II-rich, lipoprotein fraction, and the ratios of individual lipid classes were the same as in control HDL. Electron microscopy and gel permeation chromatography experiments revealed that the LTP-induced product lipoprotein population comprised particles of larger size (19.7 +/- 1.4-nm diameter) than control HDL (10.6 +/- 1.4-nm diameter). The results suggest that facilitated net lipid transfer between HDL particles altered the distribution of lipid such that apoprotein migration occurred and donor particles disintegrated. Similar results were obtained when human HDL3 or HDL2 density subclasses were employed as substrates for LTP. The lower surface area to core volume ratio of the larger, product lipoprotein particles compared with the substrate HDL requires that there be a decrease in the total exposed lipid/water interface which requires stabilization by apolipoprotein. Selective displacement of apoA-I by apoA-II or apoC, due to their greater surface binding affinity, dictates that apoA-I is preferentially lost from the lipoprotein surface and is therefore recovered as lipid-free apoprotein. Thus, it is conceivable that the structural arrangement of HDL particle lipid and apoprotein components isolated from human plasma may not represent the most thermodynamically stable arrangement of lipid and protein. 相似文献
14.
Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice 总被引:4,自引:0,他引:4
Babaev VR Patel MB Semenkovich CF Fazio S Linton MF 《The Journal of biological chemistry》2000,275(34):26293-26299
The role of macrophage lipoprotein lipase (LPL) expression in atherosclerotic lesion formation was examined in low density lipoprotein receptor (LDLR(-/-)) mice using dietary conditions designed to induce either fatty streak lesions or complex atherosclerotic lesions. First, LDLR(-/-) mice chimeric for macrophage LPL expression were created by transplantation of lethally irradiated female LDLR(-/-) mice with LPL(-/-) (n = 12) or LPL(+/+) (n = 14) fetal liver cells as a source of hematopoietic cells. To induce fatty streak lesions, these mice were fed a Western diet for 8 weeks, resulting in severe hypercholesterolemia. There were no differences in plasma post-heparin LPL activity, serum lipid levels, or lipoprotein distribution between these two groups. The mean lesion area in the proximal aorta in LPL(-/-) --> LDLR(-/-) mice was significantly reduced by 33% compared with LPL(+/+) --> LDLR(-/-) mice, and a similar reduction (38%) in lesion area was found by en face analysis of the aortae. To induce complex atherosclerotic lesions, female LDLR(-/-) mice were lethally irradiated, transplanted with LPL(-/-) (n = 14), LPL(+/-) (n = 13), or LPL(+/+) (n = 14) fetal liver cells, and fed the Western diet for 19 weeks. Serum cholesterol and triglyceride levels did not differ between the three groups. After 19 weeks of diet, the lesions in the proximal aorta were complex with relatively few macrophages expressing LPL protein and mRNA in LPL(+/+) --> LDLR(-/-) mice. Analysis of cross-sections of the proximal aorta demonstrated no differences in the extent of lesion area between the groups, whereas en face analysis of the aortae revealed a dose-dependent effect of macrophage LPL on mean aortic lesion area in LPL(-/-) --> LDLR(-/-), LPL(-/+) --> LDLR(-/-), and LPL(+/+) --> LDLR(-/-) mice (1.8 +/- 0. 2%, 3.5 +/- 0.5% and 5.9 +/- 0.8%, respectively). Taken together, these data indicate that macrophage LPL expression in the artery wall promotes atherogenesis during foam cell lesion formation, but this impact may be limited to macrophage-rich lesions. 相似文献
15.
16.
Magdolna Bihari-Varga G. Camejo M. Christiane Horn D. Szabo Flor Lopez Eva Gruber 《International journal of biological macromolecules》1983,5(1):59-62
Temperature dependent techniques (differential scanning calorimetry, polarizing light microscopy and n.m.r. spectroscopy) were used to study the physico-chemical state of low density lipoprotein (LDL) in LDL-aorta glycosaminoglycan and LDL aorta proteoglycan complexes. Complex formation between LDL and glycosaminoglycans (GAGs) resulted in a reversible liquid-liquid crystalline reorganization of the core lipids within the LDL molecule. In the proteoglycan-LDL complexes, prepared by the addition of porcine arterial proteoglycans or of human ‘lipoprotein complexing proteoglycan’, the formation of liquid crystals was an irreversible process, suggesting that the protein moiety of the proteoglycans also participates in the interaction with LDL. Arterial specimens were also examined. In atheromatous intima samples, spherulites with the above characteristics could be identified at the sites of lipoprotein deposition. Since proteoglycans are present in the arterial intima media, the phenomena observed in the present model system may also take place in vivo. The formation of proteoglycan-LDL complexes may result in the establishment of a liquid crystalline LDL structure and may thus play a role in the immobilization of LDL and in the development of the atherosclerotic lesion. 相似文献
17.
Avidin-biotin interactions at vesicle surfaces: adsorption and binding, cross-bridge formation, and lateral interactions. 总被引:2,自引:2,他引:2
下载免费PDF全文

Densely packed domains of membrane proteins are important structures in cellular processes that involve ligand-receptor binding, receptor-mediated adhesion, and macromolecule aggregation. We have used the biotin-avidin interaction at lipid vesicle surfaces to mimic these processes, including the influence of a surface grafted polymer, polyethyleneglycol (PEG). Single vesicles were manipulated by micropipette in solutions of fluorescently labeled avidin to measure the rate and give an estimate of the amount of avidin binding to a biotinylated vesicle as a function of surface biotin concentration and surface-grafted PEG as PEG-lipid. The rate of avidin adsorption was found to be four times less with 2 mol% PEG750 than for the unmodified surface, and 10 mol% PEG completely inhibited binding of avidin to biotin for a 2-min incubation. Using two micropipettes, an avidin-coated vesicle was presented to a biotinylated vesicle. In this vesicle-vesicle adhesion test, the accumulation of avidin in the contact zone was observed, again by using fluorescent avidin. More importantly, by controlling the vesicle membrane tension, this adhesion test provided a direct measure of the spreading pressure of the biotin-avidin-biotin cross-bridges confined in the contact zone. Assuming ideality, this spreading pressure gives the concentration of avidin cross-bridges in the contact zone. The rate of cross-bridge accumulation was consistent with the diffusion of the lipid-linked "receptors" into the contact zone. Once adherent, the membranes failed in tension before they could be peeled apart. PEG750 did not influence the mechanical equilibrium because it was not compressed in the contact zone, but it did perform an important function by eliminating all nonspecific adhesion. This vesicle-vesicle adhesion experiment, with a lower tension limit of 0.01 dyn/cm, now provides a new and useful method with which to measure the spreading pressures and therefore colligative properties of a range of membrane-bound macromolecules. 相似文献
18.
Small unilamellar lipid bilayer vesicles were prepared from brain phosphatidylserine, egg phosphatidylcholine, and synthetic dipalmitoylphosphatidylcholine, and were fused into larger structures by freezing and thawing, addition of calcium chloride, and passage through the lipid phase transition temperature. Fusion reactions were studied by electron microscopy, light scattering, and use of fluorescent probes. Fusion was accompanied by leakage of lipid vesicle constituents and of water-soluble solutes in the inner vesicle compartments, and by uptake of these types of components from the external solution. Such leakage was greater during fusion by freezing than by Ca2+. Passage through the transition temperature produced a moderate degree of fusion, without loss of membrane components. It is concluded that each fusion method gives rise to a characteristic size or narrow range of sizes of fusion products. The fraction of small vesicles fused into larger structure depends on the method of vesicle preparation, composition of the lipid bilayer, and composition of the external solution. Fusion is induced by creation of a discontinuity in the bilayer or by removal of water associated with the bilayer. The amount of water removed controls the extent of fusion. This is maximized in bilayers when in the liquid-crystal phase, as against the gel phase, in vesicles made by ethanol injection, as against sonication, and in charged bilayers, as against neutral ones. 相似文献
19.
A particular heparan sulphate fraction which possessed the largest proportion of high affinity variants for human low density lipoprotein contained almost equal proportions of the repeating units l-iduronosyl(O-sulphate)N-sulphamidoglucosamine and d-glucoronosyl-N-acetylglucosamine. The heparan sulphate was fractionated on lipoprotein-agarose into three populations. Results of periodate oxidation—alkaline elimination indicated that the size of the completely N-sulphated block regions increased with increasing affinity. In contrast, the number of consecutive l-iduronosyl(O-sulphate)-containing repeats decreased with increasing affinity towards lipoprotein. After selective periodate oxidation—alkaline scission of d-glucoronic acid residues only a portion of the heparan sulphate fragments retained high affinity for lipoprotein. This portion consisted of fragments larger than dodecasaccharide which contained both l-iduronic acid-O-sulphate and non-sulphated uronic acid residues (−) 2:1). No affinity or little affinity was displayed by fragments (of comparable size) that contained only sulphated l-iduronic acid residues. 相似文献
20.
Human low density lipoprotein was oxidized (Ox-LDL) by exposure to 5 microM Cu2+ and its fate in vivo was compared to acetylated low density lipoprotein (Ac-LDL). Ox-LDL, when injected into rats, is rapidly removed from the blood circulation by the liver, similarly as Ac-LDL. A separation of rat liver cells into parenchymal, endothelial, and Kupffer cells at 10 min after injection of Ox-LDL or Ac-LDL indicated that the Kupffer cell uptake of Ox-LDL is 6.8-fold higher than for Ac-LDL, leading to Kupffer cells as the main liver site for Ox-LDL uptake. In vitro studies with isolated liver cells indicated that saturable high affinity sites for Ox-LDL were present on both endothelial and Kupffer cells, whereby the capacity of Kupffer cells to degrade Ox-LDL is 6-fold higher than for endothelial cells. Competition studies showed that unlabeled Ox-LDL competed as efficiently (90%) as unlabeled Ac-LDL with the cell association and degradation of 125I-labeled Ac-LDL by endothelial and Kupffer cells. However, unlabeled Ac-LDL competed only partially (20-30%) with the cell association and degradation of 125I-labeled Ox-LDL by Kupffer cells, while unlabeled Ox-LDL or polyinosinic acid competed for 70-80%. It is concluded that the liver contains, in addition to the scavenger (Ac-LDL) receptor which interacts efficiently with both Ac-LDL and Ox-LDL and which is concentrated on endothelial cells, an additional specific Ox-LDL receptor which is highly concentrated on Kupffer cells. In vivo the specific Ox-LDL recognition site on Kupffer cells will form the major protection system against the occurrence of the atherogenic Ox-LDL particles in the blood. 相似文献