首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The export of many E. coli proteins such as proOmpA requires the cytosolic chaperone SecB and the membrane-bound preprotein translocase. Translocase is a multisubunit enzyme with the SecA protein as its peripheral membrane domain and the SecY/E protein as its integral domain. SecB, by binding to proOmpA in the cytosol, prevents its aggregation or association with membranes at nonproductive sites. The SecA receptor binds the proOmpA-SecB complex (Kd approximately 6 x 10(-8) M) through direct recognition of both the SecB (Kd approximately 2 x 10(-7) M) as well as the leader and mature domains of the precursor protein. SecB has a dual function in stabilizing the precursor and in passing it on to membrane-bound SecA, the next step in the pathway. SecA itself is bound to the membrane by its affinity (Kd approximately 4 x 10(-8) M) for SecY/E and for acidic lipids. The functions of SecB and SecA as a two-stage receptor system are linked by their affinity for each other.  相似文献   

3.
[3H]prostaglandin E2 (PGE2) binding receptors exist in rabbit alveolar bone cell membranes. The presence of high (Kd = 3.9 X 10(-9) M) and low (Kd = 8.8 X 10(-8) M) affinity binding sites of [3H]PGE2 was demonstrated. The saturation values of [3H]PGE2 for high and low affinity binding sites were 0.13 pmol/mg protein and 1.22 pmol/mg protein, respectively. The digestion of the membranes with pronase, phospholipase C, D and neuraminidase led to a decrease of [3H]PGE2 binding but phospholipase A2 did not.  相似文献   

4.
Prostaglandin E2 (PGE2) was specifically bound by the membrane fraction prepared from the mouse liver. The binding constants indicate the presence of high-affinity PGE2 binding sites with an apparent dissociation constant (Kd) of 0.82 X 10(-9) M and a capacity of 0.36 X 10(9) M/mg protein and a lower affinity PGE2 binding site with Kd = 15.73 X 10(-9) M and a capacity of 5.31 X 10(9) M/mg protein. The radioprotectors, MEA and APAETP inhibit PGE2 binding and alter its kinetics. Apparently the mechanism of PGE2 binding by membranes is related to interaction of prostaglandins with thiols and sufhydryl groups of membrane lipoproteins, while the radioprotectors modify the functional groups participating in receptor PGE2 binding.  相似文献   

5.
A partial rat apo E-beta-galactosidase fusion protein was produced in Escherichia coli Y1089 infected with recombinant lambda GT11 obtained by immunoscreening of a rat liver cDNA library with an anti-rat LDL antiserum. Partial cDNA overlapped the apo E mRNA sequence coding for apo E binding domain towards the LDL(B/E) receptor up to codon for Arg-139. Fusion protein specifically bound to human fibroblasts. The high-affinity component exhibited a Kd of 5 x 10(-8) M and 4.1 x 10(5) sites per cell. Fusion protein binding to fibroblasts was mediated by their apo E moiety and not by beta-galactosidase since: (1) specific binding of fusion protein was competed out by human LDL; (2) beta-galactosidase did not compete with fusion protein binding; and (3) human fibroblasts from a patient with familial hypercholesterolemia, deficient in LDL(B/E) receptor, bound fusion protein 10-times lower than control fibroblasts. It was demonstrated that partial fusion protein retained the functional activity of the native apo E. However, compared to full-length native or engineered apo E, fusion protein was able to bind fibroblasts without being complexed with phospholipids. Fusion proteins might be a useful tool for studying the functional efficiency of the LDL(B/E) receptor and for mapping residues and domains involved in the binding process.  相似文献   

6.
The tryptophan fluorescence emission of sarcoplasmic reticulum Ca2+-ATPase was studied both in purified ATPase vesicles and in ATPase solubilized with the nonionic detergent dodecyloctaethyleneglycolmonoether (C12E8). Fluorescence intensity changes in purified ATPase were titrated as a function of free Ca2+ in the medium. It exhibited a cooperative pattern, with a Hill number of 2.21 +/- 0.02 and K0.5 = 0.51 microM Ca2+. Upon solubilization of the ATPase, the cooperative pattern of fluorescence change was lost; the Hill number was 0.96 and K0.5 = 1.4 microM Ca2+. When solubilization was carried out in the presence of 0.5 or 1.0 mM CaCl2, followed by the titrations of fluorescence change in the micromolar Ca2+ range, the cooperative pattern was preserved under the same concentrations of C12E8 which would otherwise promote the loss in cooperativity. For the ATPase solubilized in millimolar Ca2+, the Hill number was 1.98 with a K0.5 = 1.5 microM Ca2+. The maximal amount of Ca2+ bound to the high affinity sites corresponded to approximately 1 mol of calcium/mol of polypeptide chains, both in purified ATPase vesicles and in the soluble ATPase. A model is suggested, which involves a minimum of 4 interacting Ca2+ sites (tetramers). Cooperativity is accounted for in the model by the predominance in the absence of Ca2+ of low affinity state (E') of the Ca2+ site (K'D = 5.7 x 10(-4) M), which would be congruent to 90 times more concentrated than (E), the high affinity state (KD = 1.9 x 10(-7) M). Simulations derived from this model fit the experimental data.  相似文献   

7.
The interaction of Lys-plasminogen and its fragments with fibrinogen fragment E was studied by equilibrium affinity binding. A quantitative analysis of binding parameters revealed two types of binding sites responsible for Lys-plasminogen interaction with the immobilized fragment E, i.e., with a high (Kd = 1.5 x 10(-6) M) and low (Kd = 82 x 10(-6) M) affinity ones. Among plasminogen fragments, only miniplasminogen and KI-3 bound immobilized fragment E and were eluted by epsilon-aminocaproic acid. Hence, two lysine binding sites may be involved in the binding of Lys-plasminogen to fragment E; they are localized in the KI-3 and K5 kringle structures.  相似文献   

8.
CBP1 and CBP2 are cytokinin-binding proteins isolated from tobacco callus. In particularly, CBP2 is a 26-kDa protein with high affinity (Kd=1.08 x 10(-6) M) for cytokinin [Kobayashi et al. Plant Cell Physiol.41(2): 148-157 (2000)] and the N-terminal amino acid analysis of CBP2 showed high sequence homology (92.9%) to tobacco osmotin-like protein (OLP). To compare the properties of OLP and CBP2, recombinant OLP was purified, and binding to benzyladenine (BA) was examined. The inclusion bodies of recombinant OLP were solubilized in 8 M urea and purified on an SP-Sepharose column. SDS-PAGE analysis of the purified recombinant OLP revealed a single band of 26 kDa. The Kd of solublized recombinant OLP to BA obtained from a Scatchard plot was 1.10 x 10(-6) M, which was similar to the Kd of CBP2 to BA (1.08 x 10(-6) M).  相似文献   

9.
F Met-Leu-[3H]Phe and f Nle-Leu-[3H]Phe binding to rabbit peritoneal neutrophils and purified membranes were measured at 4 degrees C silicone oil centrifugation assays, and the results were analyzed by the LIGAND computer program, which permits analysis of ligand binding to multiple classes of binding sites. LIGAND analysis of peptide binding to intact neutrophil indicated that both f Met-Leu-[3H]Phe and f Nle-Leu-[3H]Phe detected two population of binding sites. The apparent Kd values for f Met-Leu-[3H]Phe binding were 1.6 +/- 1.0 X 10(-9) M and 2.2 +/- 0.9 X 10(-8) M, respectively, and 3.1 +/- 0.2 X 10(-9) M and 1.2 +/- 0.6 X 10(-7) M for f Nle-Leu-[3H]Phe. Furthermore, the higher affinity sites detected on whole cells comprised approximately 15 to 30% of the total sites. Two populations of binding sites were also detected on purified neutrophil plasma membranes by both radiolabeled chemotactic peptides. LIGAND analysis of peptide binding to purified membranes yielded apparent Kd values of 5.0 +/- 2.5 X 10(-10) M and 4.8 +/- 0.6 X 10(-8) M for f Met-Leu-[3H]Phe binding, and 4.7 +/- 4.2 X 10(-10) M and 3.0 +/- 1.3 X 10(-8) M for f Nle-Leu-[3H]Phe. The percentage of higher affinity sites detected by f Met-Leu-[3H]Phe and f Nle-Leu-[3H]Phe on purified membranes were 1 to 5% of the total sites detected. These data are consistent either with the existence of two independent binding sites for formylpeptides on rabbit neutrophils or receptor negative cooperativity.  相似文献   

10.
Aggregation or phenosafranine in concentrated aqueous solutions and its interaction with polyphosphates was Studied by absorption and fluorescence spectroscopy. At concentrations > 10(-3) M phenosafranine forms dimers (Kd = 3.8 x 10(2) l.mole(-1)), which are characterized by a hypsochromic shift of the visible and near ultraviolet absorption maxima accompanied by a hypochromic effect. No fluorescence could be detected from phenosafranine dimers. Analogous spectral changes were observed when a polyphosphate was titrated with phenusafranine, which indicated that with increasing saturation of the polyphosphate binding sites phenosafranine gradually became bound in the aggregated form. Full saturation of the polyphosphate binding sites with phenosafranine was reached only when an excess of free dye was present. The cooperative binding of phenosafranine to a polyphosphate could be evaluated by means of a theory proposed by Schwarz et al. At the zero ionic strength and at 25 degrees C the binding was characterized by cooperative binding constant K = 6.2 x 10(5) l.mole(-1), number of binding sites per monomeric phosphate residue g = 0.4, and cooperativity parameter q reverse similar 30. Spectroscopic properties of phenosafranine in the aggregated and poly phosphate-bound stotes were compared with those of ethidium bromide.  相似文献   

11.
The equilibrium unfolding reaction of the C-terminal 80-amino-acid dimeric DNA-binding domain of human papillomavirus (HPV) strain 16 E2 protein has been investigated using fluorescence, far-UV CD, and equilibrium sedimentation. The stability of the HPV-16 E2 DNA-binding domain is concentration-dependent, and the unfolding reaction is well described as a two-state transition from folded dimer to unfolded monomer. The conformational stability of the protein, delta GH2O, was found to be 9.8 kcal/mol at pH 5.6, with the corresponding equilibrium unfolding/dissociation constant, Ku, being 6.5 x 10(-8) M. Equilibrium sedimentation experiments give a Kd of 3.0 x 10(-8) M, showing an excellent agreement between the two different techniques. Denaturation by temperature followed by the change in ellipticity also shows a concomitant disappearance of secondary and tertiary structures. The Ku changes dramatically at physiologically relevant pH's: with a change in pH from 6.1 to 7.0, it goes from 5.5 x 10(-8) M to 4.4 x 10(10) M. Our results suggest that, at the very low concentration of protein where DNA binding is normally measured (e.g., 10(-11) M), the protein is predominantly monomeric and unfolded. They also stress the importance of the coupling between folding and DNA binding.  相似文献   

12.
We have reported previously that murine mammary tumor cell subpopulations isolated from one spontaneous adenocarcinoma are heterogenous in terms of prostaglandin E2 (PGE2) synthetic capacity. We have also shown that tumor-PGE2 contributes to the ability of these cells to grow and metastasize in vivo (Fulton and Heppner: Cancer Research 45:4779-4784, 1985). In the present study, we have asked whether exogenous PGE2 has direct effects on the proliferation of these cells in vitro and if such responses can be attributed to the capacity of these cells to 1) bind PGE2 and 2) activate adenylate cyclase via the PGE2 receptor. We report that PGE2, at concentrations below 1 x 10(-5) M, does not affect the proliferation rate of these cells. This unresponsiveness is not due to the absence of receptors for PGE2. However, marked heterogeneity in receptor binding and function was detected in these closely related cell lines. Two metastatic lines (66 and 410.4) have high-affinity receptors for PGE2 (average Kd = 4.3 x 10(-9) M/L and 4.2 x 10(-9) M/L, respectively) and similar binding capacities (4.1 x 10(-4) and 2.9 x 10(4) binding sites, respectively). Two nonmetastatic lines, 410 and 67, have receptors with lower affinity (Kd = 8.3 x 10(-9) M/L and 1.6 x 10(-7) M/L, respectively) and binding capacities of 2.8 x 10(5)/410 cell or 7.3 x 10(4)/67 cell. A third nonmetastatic line (168) exhibits no specific binding. PGE2 receptor stimulation leads to elevated intracellular cAMP in lines 66, 410, and 67. Line 410.4 cells appear to have a functional lesion in the PGE2 receptor resulting in a failure to elevate cAMP in response to receptor occupancy. Adenylate cyclase can, however, be activated in these cells by cholera toxin, NaF, or forskolin. In comparison to the other cell lines, line 168 cells respond poorly to all cAMP-stimulating agents. Thus, we have found that PGE2 binding is a heterogenous property for these cells, and, in addition, we have identified an apparent uncoupling of PGE2 receptor to the adenylate cyclase system in one cell line.  相似文献   

13.
The binding of 125I-labeled human prothrombin to native and papain-treated tissue thromboplastin in the presence of CaCl2 or EDTA was studied. The Scatchard plots for the protein binding suggest the presence at thromboplastin surface of two types of binding sites, high affinity [Kd(app) = 7.4.10(-8) M] and moderate affinity [Kd(app) = 7.9.10(-5) M]. The removal of Ca2+ did not influence the Kd (values for these) sites but markedly reduced their number. Proteolysis by papain caused a decrease in the affinity of high affinity sites without affecting the Kd values of the moderate affinity sites yet caused a proportional increase in the number of both high and moderate affinity sites in the presence of Ca2+. At low prothrombin concentrations a positive cooperativity of protein binding at high affinity sites in the presence of Ca2+ was observed.  相似文献   

14.
Binding of spermidine to transfer ribonucleic acid   总被引:1,自引:0,他引:1  
M E McMahon  V A Erdmann 《Biochemistry》1982,21(21):5280-5288
The binding of spermidine to yeast tRNAPhe and Escherichia coli tRNAGlu2 at low and high ionic strength was studied by equilibrium dialysis. Once corrected for the expected Donnan effect, the binding at low ionic strength obeys the simple relationship of equivalent binding sites, and cooperative binding of spermidine to tRNA could not be detected. At low ionic strength (0.013 M Na+ ion), tRNAPhe (yeast) has 13.9 +/- 2.3 strong spermidine binding sites per molecule with Kd = 1.39 X 10(-6) M and a few weak spermidine binding sites which were inaccessible to experimentation; tRNAGlu2 (E. coli) has 14.8 +/- 1.6 strong spermidine binding sites and 4.0 +/- 0.1 weak spermidine binding sites with Kd = 1.4 X 10(-6) M and Kd = 1.23 X 10(-4) M, respectively. At high ionic strength (0.12 M monovalent cation) and 0.01 M Mg2+, tRNAPhe (yeast) has approximately 13 strong spermidine binding sites with an apparent Kd = 3.4 X 10(-3) M while the dimeric complex tRNAPhe X tRNAGlu2 has 10.4 +/- 1.2 strong spermidine binding sites per monomer with an apparent Kd = 2.0 X 10(-3) M. In the presence of increasing Na+ ion or K+ ion concentration, spermidine binding data do not fit a model for competitive binding to tRNA by monovalent cations. Rather, analysis of binding data by the Debye-Hückel approximation results in a good fit of experimental data, indicating that monovalent cations form a counterion atmosphere about tRNA, thus decreasing electrostatic interactions. On the basis of equilibrium binding analyses, it is proposed that the binding of spermidine to tRNA occurs predominantly by electrostatic forces.  相似文献   

15.
Three distinct atrial natriuretic factor (ANF) receptors have been identified and characterized from rat thoracic aortic cultured vascular smooth muscle (RTASM) cells, kidney tubular epithelium (MDCK), and Leydig tumor (MA-10) cells. These include 1) a disulfide-linked 140-kDa protein found in RTASM cells, which was reduced by dithiothreitol (DTT) to 70 kDa, 2) a 120-135-kDa single polypeptide protein, specific to MDCK and MA-10 cells whose Mr was not reduced by DTT, and 3) a 66-70-kDa protein prevalent in both RTASM and MDCK cells, which was not reduced by DTT. After incubation of RTASM cells with 4-azidobenzoyl 125I-ANF, labeling of the 140-kDa protein was blocked by both full-length ANF(99-126) and truncated ANF103-123. In contrast, the labeling of the 120-kDa receptor in MDCK cells was blocked only by full-length ANF(99-126). However, labeling of the 68-70-kDa receptor in both RTASM and MDCK cells was blocked by full-length ANF(99-126) and truncated ANF(103-123). Binding of 125I-ANF(99-126) to RTASM and MDCK cells was rapid, specific, and saturable with a Kd of 1.5 x 10(-10) M and binding capacity (Bmax) of 2.1 x 10(5) sites/RTASM cell and Kd 4.5 x 10(-10) M and Bmax 5 x 10(4) sites/MDCK cell, respectively. Binding of 125I-ANF(99-126) to RTASM cells was displaced with both full-length ANF(99-126) and truncated ANF(103-123), however, binding to MDCK cells was efficiently displaced only with full-length ANF. Both ANF(99-126) and ANF(103-123) stimulated cGMP in RTASM cells but only ANF(99-126) elicited cGMP in MDCK cells. Tryptic proteolysis of the high Mr single chain receptor produced only a 68-kDa fragment, whereas disulfide-linked 140-kDa receptor yielded 52-, 38-, 26-, and 14-kDa fragments. These data provide direct biochemical evidence for three distinct ANF receptors which might be linked to diverse physiological functions of ANF such as natriuresis in the kidney, vasorelaxation in vascular smooth muscle, and steroidogenic responsiveness in Leydig cells.  相似文献   

16.
17.
A prostaglandin E2 (PGE2) receptor was solubilized and isolated from cardiac sarcolemma membranes. Its binding characteristics are almost identical to those of the membrane bound receptor. [3H]PGE2 binding to solubilized and membrane bound receptor was sensitive to elevated temperature and no binding was observed in the absence of NaCl. No significant effects of DTT, ATP, Mg2+, Ca2+ or of changes in buffer pH were observed on [3H]PGE2 binding to either solubilized or membrane-bound receptor. Unlabelled PGE1 displaced over 90% of [3H]PGE2 from the CHAPS-solubilized receptor. PGD2, PGI2, PGF2 alpha and 6-keto-PGF1 alpha were not effective in displacing [3H]PGE2 from the receptor. Scatchard analysis of [3H]PGE2 binding to CHAPS-solubilized receptor revealed the presence of two types of PGE2 binding sites with Kd of 0.33 +/- 0.05 nM and 3.00 +/- 0.27 nM and Bmax of 0.5 +/- 0.04 and 2.0 +/- 0.1 pmol/mg of protein. The functional PGE2 receptor was isolated from CHAPS-solubilized SL membrane using two independent methods: first by a WGA-Sepharose chromatography and second by sucrose gradient density centrifugation. Receptor isolated by these two methods bound [3H]PGE2. Unlabelled PGE1 and PGE2 displaced [3H]PGE2 from the purified receptor. Scatchard analysis of [3H]PGE2 binding to purified receptor revealed the presence of the two binding sites as observed for the membrane bound and CHAPS-solubilized receptor. SDS-polyacrylamide gel electrophoresis of the purified receptor fractions revealed the presence of a protein band of M(r) of approx. 100,000. This 100-kDa was photolabelled with [3H]azido-PGE2, a photoactive derivative of PGE2. We propose that this 100-kDa protein is a cardiac PGE2 receptor.  相似文献   

18.
19.
Purified mitochondria from rat brain contain microtubule-associated proteins (MAPs) bound to the outer membrane. Studies of binding in vitro performed with microtubules and with purified microtubule proteins showed that mitochondria preferentially interact with the high-molecular-mass MAPs (and not with Tau protein). Incubation of intact mitochondria with Taxol-stabilized microtubules resulted in the selective trapping of both MAPs 1 and 2 on mitochondria, indicating that an interaction between the two organelles occurred through a site on the arm-like projection of MAPs. Two MAP-binding sites were located on intact mitochondria. The lower-affinity MAP2-binding site (Kd = 2 x 10(-7) M) was preserved and enriched in the outer-membrane fraction, whereas the higher-affinity site (Kd = 1 x 10(-9) M) was destroyed after removing the outer membrane with digitonin. Detergent fractionation of mitochondrial outer membranes saturated with MAP2 bound in vitro showed that MAPs are associated with membrane fragments which contain the pore-forming protein (porin). MAP2 also partially prevents the solubilization of porin from outer membrane, indicating a MAP-induced change in the membrane environment of porin. These observations demonstrate the presence of specific MAP-binding sites on the outer membrane, suggesting an association between porin and the membrane domain involved in the cross-linkage between microtubules and mitochondria.  相似文献   

20.
Conyers GB  Wu G  Bessman MJ  Mildvan AS 《Biochemistry》2000,39(9):2347-2354
Recombinant IalA protein from Bartonella bacilliformis is a monomeric adenosine 5'-tetraphospho-5'-adenosine (Ap4A) pyrophosphatase of 170 amino acids that catalyzes the hydrolysis of Ap4A, Ap5A, and Ap6A by attack at the delta-phosphorus, with the departure of ATP as the leaving group [Cartwright et al. (1999) Biochem. Biophys. Res. Commun. 256, 474-479]. When various divalent cations were tested over a 300-fold concentration range, Mg2+, Mn2+, and Zn2+ ions were found to activate the enzyme, while Ca2+ did not. Sigmoidal activation curves were observed with Mn2+ and Mg2+ with Hill coefficients of 3.0 and 1.6 and K0.5 values of 0.9 and 5.3 mM, respectively. The substrate M2+ x Ap4A showed hyperbolic kinetics with Km values of 0.34 mM for both Mn2+ x Ap4A and Mg2+ x Ap4A. Direct Mn2+ binding studies by electron paramagnetic resonance (EPR) and by the enhancement of the longitudinal relaxation rate of water protons revealed two Mn2+ binding sites per molecule of Ap4A pyrophosphatase with dissociation constants of 1.1 mM, comparable to the kinetically determined K0.5 value of Mn2+. The enhancement factor of the longitudinal relaxation rate of water protons due to bound Mn2+ (epsilon b) decreased with increasing site occupancy from a value of 12.9 with one site occupied to 3.3 when both are occupied, indicating site-site interaction between the two enzyme-bound Mn2+ ions. Assuming the decrease in epsilon(b) to result from cross-relaxation between the two bound Mn2+ ions yields an estimated distance of 5.9 +/- 0.4 A between them. The substrate Ap4A binds one Mn2+ (Kd = 0.43 mM) with an epsilon b value of 2.6, consistent with the molecular weight of the Mn2+ x Ap4A complex. Mg2+ binding studies, in competition with Mn2+, reveal two Mg2+ binding sites on the enzyme with Kd values of 8.6 mM and one Mg2+ binding site on Ap4A with a Kd of 3.9 mM, values that are comparable to the K0.5 for Mg2+. Hence, with both Mn2+ and Mg2+, a total of three metal binding sites were found-two on the enzyme and one on the substrate-with dissociation constants comparable to the kinetically determined K0.5 values, suggesting a role in catalysis for three bound divalent cations. Ca2+ does not activate Ap4A pyrophosphatase but inhibits the Mn2+-activated enzyme competitively with a Ki = 1.9 +/- 1.3 mM. Ca2+ binding studies, in competition with Mn2+, revealed two sites on the enzyme with dissociation constants (4.3 +/- 1.3 mM) and one on Ap4A with a dissociation constant of 2.1 mM. These values are similar to its Ki suggesting that inhibition by Ca2+ results from the complete displacement of Mn2+ from the active site. Unlike the homologous MutT pyrophosphohydrolase, which requires only one enzyme-bound divalent cation in an E x M2+ x NTP x M2+ complex for catalytic activity, Ap4A pyrophosphatase requires two enzyme-bound divalent cations that function in an active E x (M2+)2 x Ap4A x M2+ complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号