首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of inteins are comprised of a protein splicing domain and a homing endonuclease domain. Experimental evidence has demonstrated that the splicing domain and the endonuclease domain in a bifunctional intein are largely independent of each other with respect to both structure and activity. Here, an artificial bifunctional intein has been created through the insertion of an existing homing endonuclease into a mini-intein that is naturally lacking this functionality. The gene for I-CreI, an intron-encoded homing endonuclease, was grafted into the monofunctional Mycobacterium xenopi GyrA intein at the putative site of the missing endonuclease. The resulting fusion protein was found to be capable of protein splicing similar to that of the parent intein. In addition, the protein demonstrated site-specific endonuclease activity that is characteristic of the I-CreI homing endonuclease. The function of each domain therefore remained unaffected by the presence of the other domain. This artificial fusion of the two domains is a potential novel mobile genetic element.  相似文献   

2.
Inteins are naturally occurring intervening sequences that catalyze a protein splicing reaction resulting in intein excision and concatenation of the flanking polypeptides (exteins) with a native peptide bond. Inteins display a diversity of catalytic mechanisms within a highly conserved fold that is shared with hedgehog autoprocessing proteins. The unusual chemistry of inteins has afforded powerful biotechnology tools for controlling enzyme function upon splicing and allowing peptides of different origins to be coupled in a specific, time-defined manner. The extein sequences immediately flanking the intein affect splicing and can be defined as the intein substrate. Because of the enormous potential complexity of all possible flanking sequences, studying intein substrate specificity has been difficult. Therefore, we developed a genetic selection for splicing-dependent kanamycin resistance with no significant bias when six amino acids that immediately flanked the intein insertion site were randomized. We applied this selection to examine the sequence space of residues flanking the Nostoc punctiforme Npu DnaE intein and found that this intein efficiently splices a much wider range of sequences than previously thought, with little N-extein specificity and only two important C-extein positions. The novel selected extein sequences were sufficient to promote splicing in three unrelated proteins, confirming the generalizable nature of the specificity data and defining new potential insertion sites for any target. Kinetic analysis showed splicing rates with the selected exteins that were as fast or faster than the native extein, refuting past assumptions that the naturally selected flanking extein sequences are optimal for splicing.  相似文献   

3.
The DNA repair protein RecA of Mycobacterium tuberculosis contains an intein, a self-splicing protein element. We have employed this Mtu recA intein to create a selection system for successful intein splicing by inserting it into a kanamycin-resistance gene so that functional antibiotic resistance can only be restored upon protein splicing. We then proceeded to develop an ORFTRAP, i.e., a selection system for the cloning of open reading frames (ORFs). The ORFTRAP exploits the self-splicing properties of inteins (which depend on full-length in-frame translation of a precursor protein) by allowing protein splicing to occur when DNA fragments encoding ORFs are inserted into the Mtu recA intein, whereas DNA fragments containing non-ORFs are selected against. Regions of the Mtu recA intein that tolerate the insertion of additional amino acids were identified by Bgl II linker scanning mutagenesis, and a respective construct was chosen as the ORFTRAP. To test the maximum insert size that could be cloned into ORFTRAP, DNA fragments of increasing length from the Listeria monocytogenes hly gene as well as a genomic library of Haemophilus influenzae were inserted and it was found that the longest permissive inserts were 425 bp and 251 bp, respectively. The H. influenzae ORFTRAP library also demonstrated the strength (strong selection power) and weakness (insertion of very small fragments) of the system. Further modifications should make the ORFTRAP useful for protein expression, epitope mapping, and antigen screening.  相似文献   

4.
A genetic system yields self-cleaving inteins for bioseparations.   总被引:1,自引:0,他引:1  
A self-cleaving element for use in bioseparations has been derived from a naturally occurring, 43 kDa protein splicing element (intein) through a combination of protein engineering and random mutagenesis. A mini-intein (18 kDa) previously engineered for reduced size had compromised activity and was therefore subjected to random mutagenesis and genetic selection. In one selection a mini-intein was isolated with restored splicing activity, while in another, a mutant was isolated with enhanced, pH-sensitive C-terminal cleavage activity. The enhanced-cleavage mutant has utility in affinity fusion-based protein purification. These mutants also provide new insights into the structural and functional roles of some conserved residues in protein splicing.  相似文献   

5.
Intein-mediated protein ligation is a recently developed method that enables the C-terminal labeling of proteins. This technique requires a correctly folded intein mutant that is fused to the C-terminus of a target protein to create a thioester, which allows the ligation of a peptide with an N-terminal cysteine (1, 2). Here we describe the establishment of this method for the labeling, under denaturing conditions, of target proteins that are expressed insolubly as intein fusion proteins. A GFPuv fusion protein with the Mycobacterium xenopi gyrA intein was expressed in inclusion bodies in Escherichia coli and initially used as a model protein to verify intein cleavage activity under different refolding conditions. The intein showed activity after refolding in nondenaturing and slightly denaturing conditions. A construct of the same intein with an anti-neutravidin single-chain antibody was also expressed in an insoluble form. The intein-mediated ligation was established for this single chain antibody-intein fusion protein under denaturing conditions in 4 M urea to prevent significant precipitation of the fusion protein during the first refolding step. Under optimized conditions, the single-chain antibody was labeled with a fluorescent peptide and used for antigen screening on a biochip after final refolding. This screening procedure allowed the determination of binding characteristics of the scFv for avidin proteins in a miniaturized format.  相似文献   

6.
Protein splicing is a self-catalyzed process involving the excision of an intervening polypeptide sequence, the intein, and joining of the flanking polypeptide sequences, the extein, by a peptide bond. We have studied the in vitro splicing of erythropoietin (EPO) using a truncated form of the Mycobacterium tuberculosis RecA mini-intein in which the homing endonuclease domain was replaced with a hexahistidine sequence (His-tag). The intein was inserted adjacent to cysteine residues to assure that the spliced product had the natural amino acid sequence. When expressed in Escherichia coli, intein-containing EPO was found entirely as inclusion bodies but could be refolded in soluble form in the presence of 0.5 M arginine. Protein splicing of the refolded protein could be induced with a reducing agent such as DTT or tris(2-carboxyethyl)phosphine and led to the formation of EPO and mini-intein along with some cleavage products. Protein splicing mediated by the RecA intein requires the presence of a cysteine residue adjacent to the intein insertion site. We compared the efficiencies of protein splicing adjacent to three of the four cysteine residues of EPO (Cys29, Cys33 and Cys161) and found that insertion of intein adjacent to Cys29 allowed far more efficient protein splicing than insertion adjacent to Cys33 or Cys161. For ease of purification, our experiments involved a His-tagged EPO fusion protein and a His-tagged intein and the spliced products (25 kDa EPO and 24 kDa mini-intein) were identified by Western blotting using anti-EPO and anti-His-tag antibodies and by mass spectroscopy. The optimal splicing yield at Cys29 (40%) occurred at pH 7.0 after refolding at 4 degrees C and splicing for 18 h at 25 degrees C in the presence of 1 mM DTT.  相似文献   

7.
An intein-based positive genetic selection system was developed to study protein splicing and to provide a selection system with the potential for finding splicing inhibitors. Inteins can be novel antimicrobial targets when present in essential proteins since blocking splicing would kill the organism. For example, pathogenic mycobacteria encode inteins that interrupt DNA gyrase. The gyrase selection system exploits (1) splicing of inteins out of Gyrase A and (2) the dominant lethal effect of quinolone poisoning of DNA gyrase, which in turn blocks replication. The system was adapted for whole-cell high-throughput screening using green fluorescent protein as an automatable readout of viability. To demonstrate the efficacy of this system, mutations that blocked splicing of the Mycobacterium xenopi Gyrase A intein were isolated. Splicing was then assayed at a second temperature to identify inteins with a temperature-sensitive splicing phenotype. Mutations were mapped onto a structure-based sequence alignment, which led to the rational prediction of a temperature-sensitive splicing mutation. GyrA intein subdomain relationships also provided insight into intein evolution.  相似文献   

8.
Inteins are autocatalytic protein domains that post-translationally excise from protein precursors and ligate their flanking regions with a peptide bond, in a process called protein splicing. Intein-containing DNA polymerases of cyanobacteria and nanoarchaea are naturally split into two separate genes at their intein domain. Such naturally occurring split inteins rapidly self-associate and reconstitute protein-splicing activity in trans. Here, we analyze the in vitro protein-splicing activity of three naturally split inteins from diverse cyanobacteria: Oscillatoria limnetica, Thermosynechococcus vulcanus, and Nostoc sp. PCC7120. N- and C-terminal halves of these split inteins were mixed in nine combinations, resulting in three endogenous (wild-type) and six exogenous combinations. Protein splicing was detected in all split-intein combinations, despite a 30-50% sequence variation between the homologous proteins. Splicing activity proceeded under a variety of conditions, including the presence of denaturants and reductants and high temperature, ionic strength, and viscosity. Still, in a high concentration of salt (2 M) or urea (6 M), specific combinations spliced significantly better than others. Additionally, copper ions were found to inhibit trans splicing in a reversible double-lock reaction. Our comparative analysis of naturally split inteins in endogenous and exogenous combinations demonstrates the modularity of trans protein-splicing elements and their robust activity. It suggests tight interactions between split-intein halves and conditions for modifying the specificity of intein parts. These results promote the biotechnological use of split inteins for controlled assembly of protein fragments either in vivo or in vitro and under moderate or extreme conditions.  相似文献   

9.
A naturally occurring split intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) has been shown to mediate efficient in vivo and in vitro trans-splicing in a foreign protein context. A cis-splicing Ssp DnaE intein construct displayed splicing activity similar to the trans-splicing form, which suggests that the N- and C-terminal intein fragments have a high affinity interaction. An in vitro trans-splicing system was developed that used a bacterially expressed N-terminal fragment of the Ssp DnaE intein and either a bacterially expressed or chemically synthesized intein C-terminal fragment. Unlike artificially split inteins, the Ssp DnaE intein fragments could be reconstituted in vitro under native conditions to mediate splicing as well as peptide bond cleavage. This property allowed the development of an on-column trans-splicing system that permitted the facile separation of reactants and products. Furthermore, the trans-splicing activity of the Ssp DnaE intein was successfully applied to the cyclization of proteins in vivo. Also, the isolation of the unspliced precursor on chitin resin allowed the cyclization reaction to proceed in vitro. The Ssp DnaE intein thus represents a potentially important protein for in vivo and in vitro protein manipulation.  相似文献   

10.
Protein splicing involves the self-catalyzed excision of a protein-splicing element, the intein, from flanking polypeptides, the exteins, which are concomitantly joined by a peptide bond. Taking advantage of recently developed in vitro systems in which protein splicing occurs in trans to assay for protein-splicing inhibitors, we discovered that low concentrations of Zn(2+) inhibited splicing mediated both by the RecA intein from Mycobacterium tuberculosis and by the naturally split DnaE intein from Synechocystis sp. PCC6803. Inhibition by Zn(2+) was also observed with a cis-splicing system involving the RecA intein. In all experimental systems used, inhibition by Zn(2+) could be completely reversed by the addition of EDTA. Zinc ion also inhibited hydroxylamine-dependent N-terminal cleavage of the RecA intein. All other divalent transition metal ions tested were less effective as inhibitors than Zn(2+). The reversible inhibition by Zn(2+) should be useful in studies of the mechanism of protein splicing and allow structural studies of unmodified protein-splicing precursors.  相似文献   

11.
Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch.  相似文献   

12.
Chen L  Pradhan S  Evans TC 《Gene》2001,263(1-2):39-48
We report that the N- and C-terminal splicing domains of the intein found in the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) are capable of association in vivo and in vitro, even with key splicing residues changed to alanine (Cys(1), Asn(159), and Cys(+1) to Ala). These studies utilized the herbicide resistant form of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Salmonella typhimurium and an Escherichia coli strain with the EPSPS gene deleted from its genome (E. coli strain ER2799). EPSPS was mapped to identify potential split sites using a facile Tn7 linker scanning procedure. Forty positions were found to tolerate a five amino acid insertion while 21 sites did not, as assayed by the rescue of growth of E. coli strain ER2799. Further characterization of these sites by inserting a full length Ssp DnaE intein identified residue 235 of EPSPS as the optimal position. The EPSPS gene was then divided into amino acids 1-235 and 236-427 which were fused to residues 1-123 and 124-159 of a splicing defective Ssp DnaE intein, respectively. Expression of the EPSPS-intein fusions from separate DNA molecules conferred resistance to the herbicide glyphosate, indicating that the intein splicing domains were bringing the EPSPS fragments together to generate activity. As a control the split EPSPS without the intein-affinity domain did not allow cell growth. The use of an intein as an in vivo affinity domain was termed intein-mediated protein complementation (IPC). Intein fragment assembly was verified in vitro by immobilizing the C-terminal splicing domain of the Ssp DnaE intein on a resin and demonstrating that the N-terminal 235 amino acids of EPSPS only bound to the resin when fused to the N-terminal splicing domain of the Ssp DnaE intein. As chloroplast DNA is not transmitted by pollen in plants such as corn and soybean, transgene spread via pollen may be controlled in the future by expressing inactive gene fragments from separate DNA locations, such as the nuclear and chloroplast genome, and using the split intein to generate protein activity.  相似文献   

13.
Lew BM  Mills KV  Paulus H 《Biopolymers》1999,51(5):355-362
Protein splicing in trans results in the ligation of two protein or peptide segments linked to appropriate intein fragments. We have characterized the trans-splicing reaction mediated by a naturally expressed, approximately 100-residue N-terminal fragment of the Mycobacterium tuberculosis intein and a synthetic peptide containing the 38 C-terminal intein residues, and found that the splicing reaction was very versatile and robust. The efficiency of splicing was nearly independent of temperature between 4 and 37 degrees C and pH between 6.0 and 7.5, with only a slight decline at pH values as high as 8.5. In addition, there was considerable flexibility in the choice of the C-terminal intein fragment, no significant difference in protein ligation efficiency being observed between reactions utilizing the N-terminal fragment and either the naturally expressed 107-residue C-terminal portion of the intein, much smaller synthetic peptides, or the 107-residue C-terminal intein fragment modified by fusion of a maltose binding protein domain to its N-terminus. The ability to use different types of the C-terminal intein fragments and a broad range of reaction conditions make protein splicing in trans a versatile tool for protein ligation.  相似文献   

14.
Homing endonucleases are site-specific and rare cutting endonucleases often encoded by intron or intein containing genes. They lead to the rapid spread of the genetic element that hosts them by a process termed 'homing'; and ultimately the allele containing the element will be fixed in the population. PI-SceI, an endonuclease encoded as a protein insert or intein within the yeast V-ATPase catalytic subunit encoding gene (vma1), is among the best characterized homing endonucleases. The structures of the Sce VMA1 intein and of the intein bound to its target site are known. Extensive biochemical studies performed on the PI-SceI enzyme provide information useful to recognize critical amino acids involved in self-splicing and endonuclease functions of the protein. Here we describe an insertion of the Green Fluorescence Protein (GFP) into a loop which is located between the endonuclease and splicing domains of the Sce VMA1 intein. The GFP is functional and the additional GFP domain does not prevent intein excision and endonuclease activity. However, the endonuclease activity of the newly engineered protein was different from the wild-type protein in that it required the presence of Mn(2+) and not Mg(2+) metal cations for activity.  相似文献   

15.
DnaE intein from Nostoc punctiforme (Npu) is one of naturally occurring split inteins, which has robust protein splicing activity. Highly efficient trans-splicing activity of NpuDnaE intein could widen various biotechnological applications. However, structural basis of the efficient protein splicing activity is poorly understood. As a first step toward better understanding of protein trans-splicing mechanism, we present the backbone and side-chain resonance assignments of a single chain variant NpuDnaE intein as determined by triple resonance experiments with [13C,15N]-labeled protein.  相似文献   

16.
Martin DD  Xu MQ  Evans TC 《Biochemistry》2001,40(5):1393-1402
A naturally occurring trans-splicing intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) was used to characterize the intein-catalyzed splicing reaction. Trans-splicing/cleavage reactions were initiated by combining the N-terminal splicing domain of the Ssp DnaE intein containing five native N-extein residues and maltose binding protein as the N-extein with the C-terminal Ssp DnaE intein splicing domain (E(C)) with or without thioredoxin fused in-frame to its carboxy terminus. Observed rate constants (k(obs)) for dithiothreitol-induced N-terminal cleavage, C-terminal cleavage, and trans-splicing were (1.0 +/- 0.5) x 10(-3), (1.9 +/- 0.9) x 10(-4), and (6.6 +/- 1.3) x 10(-5) s(-1), respectively. Preincubation of the intein fragments showed no change in k(obs), indicating association of the two splicing domains is rapid relative to the subsequent steps. Interestingly, when E(C) concentrations were substoichiometric with respect to the N-terminal splicing domain, the levels of N-terminal cleavage were equivalent to the amount of E(C), even over a 24 h period. Activation energies for N-terminal cleavage and trans-splicing were determined by Arrhenius plots to be 12.5 and 8.9 kcal/mol, respectively. Trans-splicing occurred maximally at pH 7.0, while a slight increase in the extent of N-terminal cleavage was observed at higher pH values. This work describes an in-depth kinetic analysis of the splicing and cleavage activity of an intein, and provides insight for the use of the split intein as an affinity domain.  相似文献   

17.
蛋白质剪接研究进展   总被引:1,自引:1,他引:0  
蛋白质剪接是一个翻译后自催化加工过程,它不需要酶或其他辅助因子的参与。在这个过程中,前体蛋白的Intein(内含肽)被切离,其两侧的Extein(外显肽)连接在一起。Intein按结构可分为经典Intein和微型Intein,其中的经典Intein包括Hint结构域和中间的归巢内切酶结构域(该结构域在微型内含肽中不存在)。蛋白质剪接及其他具有Hint结构域的蛋白加工过程的起始步骤是N-S/O酰基重排反应,该反应是由Hint结构域催化的;Intein的剪接还分为顺式剪接和反式剪接,通过对Intein进行改造,可以阻断剪接过程,但不影响N端肽键或C端肽键的断裂;通过筛选突变体,可以获得温度敏感型、pH敏感型或小分子诱导型的内含肽。这些研究促进了Intein在多肽制备及其它方面的应用。  相似文献   

18.
Intein is a protein sequence mebedded in-frame within a precursor protein and is posttranslationally excised by a self-catalytic protein splicing process. Protein splicing is believed to follow a pathway requiring Cys, Ser, or Thr residues at the intein N-terminus and substitutions other than Cys, Ser, or Thr residues prevent splicing. We show that the dnaB locus in some strains of M. avium-intracellulare complex (MAC) contains intein and that the intein N-terminal amino acid is Ala [Ala-type]. We demonstrate that the M. avium DnaB precursor protein undergoes posttranslational proteolytic processing producing proteins corresponding to the sizes of the DnaB and intein. Further, by Western analysis we detect a protein corresponding to the size of the spliced DnaB protein in MAC cell extracts. Together, these results indicate that the Ala-type MAC DnaB inteins can splice and provide another example that points to an interesting alternative splicing mechanism (Southworth, M. W., Benner, J., and Perler, F. B., EMBO J. 19, 5019-5026, 2000).  相似文献   

19.
Biological applications of protein splicing   总被引:1,自引:0,他引:1  
Vila-Perelló M  Muir TW 《Cell》2010,143(2):191-200
Protein splicing is a naturally occurring process in which a protein editor, called an intein, performs a molecular disappearing act by cutting itself out of a host protein in a traceless manner. In the two decades since its discovery, protein splicing has been harnessed for the development of several protein-engineering methods. Collectively, these technologies help bridge the fields of chemistry and biology, allowing hitherto impossible manipulations of protein covalent structure. These tools and their application are the subject of this Primer.  相似文献   

20.
Inteins are naturally occurring protein elements that autocatalytically excise themselves from a nonfunctional precursor and ligate the flanking protein segments with a peptide bond, resulting in a functional protein. Inteins interrupt three proteins essential for the viability of Mycobacterium tuberculosis. Preventing intein splicing, and thus, the formation of functional post-processed proteins suggests that intein inhibition may be used as a novel antimycobacterial strategy (M. Belfort, US Patent, 5795,731). Due to the growing problem of multiple drug-resistant tuberculosis infections, such alternatives to traditional antibiotic regimens are especially appealing. It has been shown that cisplatin, an FDA approved anticancer drug, is a potent inhibitor of intein splicing, both in vitro and in vivo (Zhang et al., (2011) JBC, 286, 1277). Due to its high toxicity, however, cisplatin has limited clinical value as an antimycobacterial. Several cisplatin analogs were selected for further study using an in vitro fluorescent reporter splicing assay in an effort to identify compounds that retained potent inhibitory activity while minimizing the toxicity associated with cisplatin. An in vitro inhibitor, more potent than cisplatin, was identified. Structural and biochemical experiments are ongoing to gain insight into the mechanism of the action of these platinum compounds which will lay the groundwork for a potential de novo design of novel antimicrobials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号