首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vitro RNA annealing assays demonstrate that RBP16 significantly stimulates the annealing of gRNAs to cognate pre-mRNAs. In addition, RBP16 also facilitates hybridization of partially complementary RNAs unrelated to the editing process. The RNA annealing activity of RBP16 is independent of its high-affinity binding to gRNA oligo(U) tails, consistent with the previously reported in vitro editing stimulatory properties of the protein. In vivo studies expressing recombinant RBP16 in mutant Escherichia coli strains demonstrate that RBP16 is an RNA chaperone and that in addition to RNA annealing activity, it contains RNA unwinding activity. Our data suggest that the mechanism by which RBP16 facilitates RNA editing involves its capacity to modulate RNA secondary structure and promote gRNA/pre-mRNA annealing.  相似文献   

4.
5.
RNA annealing activities in HeLa nuclei.   总被引:30,自引:11,他引:19       下载免费PDF全文
RNA-RNA base pairing plays a critical role in the interactions between pre-mRNAs and trans-acting factors during the processing of pre-mRNAs (hnRNAs) into mRNAs, and it is likely that specific factors are required to promote the annealing of RNAs. To identify particular nuclear components that have such activity, we fractionated HeLa nucleoplasm and assayed for activity which promoted the hybridization of a pre-mRNA with an antisense RNA probe complementary to 60 nucleotides (nt) encompassing the 3' splice site. At least nine major RNA annealing activities were identified and, surprisingly, eight of these copurified partially or to homogeneity with known hnRNP proteins. The activities of three of these proteins, hnRNP A1, C1 and U, were confirmed using purified recombinant proteins. Moreover, we found that the RNA binding domain alone of hnRNP C1/C2 had significant activity, indicating that this RNA annealing may result, at least partly, from chaperone activity: a direct modulation of RNA conformation by hnRNP proteins. The finding that hnRNP proteins have strong RNA annealing activity indicates that they can profoundly affect the interactions of pre-mRNAs with trans-acting factors and suggests this to be an important function of hnRNP proteins in the processing of pre-mRNAs.  相似文献   

6.
The eukaryotic nucleolus contains a large number of small RNA molecules that, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. One of the snoRNPs that has been shown to possess enzymatic activity is the RNase MRP. RNase MRP is an endoribonuclease involved in the formation of the 5' end of 5.8S rRNA. In this study the association of the hPop1 protein with the RNase MRP complex was investigated. The hPop1 protein seems not to be directly bound to the RNA component, but requires nt 1-86 and 116-176 of the MRP RNA to associate with the RNase MRP complex via protein-protein interactions. UV crosslinking followed by ribonuclease treatment and immunoprecipitation with anti-Th/To antibodies revealed three human proteins of about 20, 25, and 40 kDa that can associate with the RNase MRP complex. The 20- and 25-kDa proteins appear to bind to stem-loop I of the MRP RNA whereas the 40-kDa protein requires the central part of the MRP RNA (nt 86-176) for association with the RNase MRP complex. In addition, we show that the human RNase P proteins Rpp30 and Rpp38 are also associated with the RNase MRP complex. Expression of Vesicular Stomatitis Virus- (VSV) tagged versions of these proteins in HeLa cells followed by anti-VSV immunoprecipitation resulted in coprecipitation of both RNase P and RNase MRP complexes. Furthermore, UV crosslinking followed by anti-Th/To and anti-Rpp38 immunoprecipitation revealed that the 40-kDa protein we detected in UV crosslinking is probably identical to Rpp38.  相似文献   

7.
8.
RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.  相似文献   

9.
A stable 100-kD complex from mitochondria of Leishmania tarentolae containing two RNA-binding proteins, Ltp26 and Ltp28, was identified by cross-linking to unpaired 4-thiouridine nucleotides in a partially duplex RNA substrate. The genes were cloned and expressed and the complex was reconstituted from recombinant proteins in the absence of RNA or additional factors. The Ltp26 and Ltp28 proteins are homologs of gBP27 and gBP29 from Crithidia fasciculata and gBP25 and gBP21 from Trypanosoma brucei, respectively. The purified Ltp26/Ltp28 complex, the individual recombinant proteins, and the reconstituted complex are each capable of catalyzing the annealing of complementary RNAs, as was previously shown for gBP21 from T. brucei. A high-molecular-weight RNP complex consisting of the Ltp26/Ltp28 complex and several 55-60-kD proteins together with guide RNA could be purified from mitochondrial extract of L. tarentolae transfected with Ltp28-TAP. This complex also interacted in a less stable manner with the RNA ligase-containing L-complex and with the 3' TUTase. The Ltp26/Ltp28 RNP complex is a candidate for catalyzing the annealing of guide RNA and pre-edited mRNA in the initial step of RNA editing.  相似文献   

10.
Translocases of mitochondrial inner membrane (TIMs) are multiprotein complexes. The only Tim component so far characterized in kinetoplastid parasites such as Trypanosoma brucei is Tim17 (TbTim17), which is essential for cell survival and mitochondrial protein import. Here, we report that TbTim17 is present in a protein complex of about 1,100 kDa, which is much larger than the TIM complexes found in fungi and mammals. Depletion of TbTim17 in T. brucei impairs the mitochondrial import of cytochrome oxidase subunit IV, an N-terminal signal-containing protein. Pretreatment of isolated mitoplasts with the anti-TbTim17 antibody inhibited import of cytochrome oxidase subunit IV, indicating a direct involvement of the TbTim17 in the import process. Purification of the TbTim17-containing protein complex from the mitochondrial membrane of T. brucei by tandem affinity chromatography revealed that TbTim17 associates with seven unique as well as a few known T. brucei mitochondrial proteins. Depletion of three of these novel proteins, i.e. TbTim47, TbTim54, and TbTim62, significantly decreased mitochondrial protein import in vitro. In vivo targeting of a newly synthesized mitochondrial matrix protein, MRP2, was also inhibited due to depletion of TbTim17, TbTim54, and TbTim62. Co-precipitation analysis confirmed the interaction of TbTim54 and TbTim62 with TbTim17 in vivo. Overall, our data reveal that TbTim17, the single homolog of Tim17/22/23 family proteins, is present in a unique TIM complex consisting of novel proteins in T. brucei and is critical for mitochondrial protein import.  相似文献   

11.
12.
13.
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.  相似文献   

14.
In kinetoplastid protists, maturation of mitochondrial pre-mRNAs involves the insertion and deletion of uridylates (Us) within coding regions, as specified by mitochondrial DNA-encoded guide RNAs. U-deletion editing involves endonucleolytic cleavage of the pre-mRNA at the editing site followed by U-specific 3'-5'-exonucleolytic removal of nonbase-paired Us prior to ligation of the two mRNA cleavage fragments. We showed previously that an exonuclease/endonuclease/phosphatase (EEP) motif protein from Leishmania major, designated RNA editing exonuclease 1 (REX1) (Kang, X., Rogers, K., Gao, G., Falick, A. M., Zhou, S.-L., and Simpson, L. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 1017-1022), exhibits 3'-5'-exonuclease activity. Two EEP motif proteins have also been identified in the Trypanosoma brucei editing complex. TbREX1 is a homologue of LmREX1, and TbREX2 shows homology to another editing protein in L. major, which lacks the EEP motif (LmREX2*). Here we have expressed the T. brucei EEP motif proteins in insect cells and purified them to homogeneity. We showed that these are U-specific 3'-5'-exonucleases that are inhibited by base pairing of 3' Us. The recombinant EEP motif alone also showed 3'-5' U-specific exonuclease activity, and mutations of the REX EEP motifs greatly reduced exonuclease activity. The absence of enzymatic activity in LmREX2* was confirmed with a purified recombinant protein. We showed that pre-cleaved U-deletion editing could be reconstituted with either TbREX1 or TbREX2 in combination with either RNA ligase, LmREL1, or LmREL2. Down-regulation of TbREX2 expression by conditional RNA interference had little effect on parasite viability or sedimentation of the L-complex, suggesting either that TbREX2 is inactive in vivo or that TbREX1 can compensate for the loss of TbREX2 function in down-regulated cells.  相似文献   

15.
BM Foda  KM Downey  JC Fisk  LK Read 《Eukaryotic cell》2012,11(9):1119-1131
Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.  相似文献   

16.
The NS1A protein of influenza A virus binds the cellular CPSF30 protein, thereby inhibiting the 3′-end processing of all cellular pre-mRNAs, including beta interferon pre-mRNA. X-ray crystallography identified the CPSF30-binding pocket on the influenza virus A/Udorn/72 (Ud) NS1A protein and the critical role of two hydrophobic NS1A amino acids outside the pocket, F103 and M106, in stabilizing the CPSF30-NS1A complex. Although the NS1A protein of the 1997 H5N1 influenza A/Hong Kong/483/97 (HK97) virus contains L (not F) at position 103 and I (not M) at position 106, it binds CPSF30 in vivo to a significant extent because cognate (HK97) internal proteins stabilize the CPSF30-NS1A complex in infected cells. Here we show that the cognate HK97 polymerase complex, containing the viral polymerase proteins (PB1, PB2, and PA) and the nucleocapsid protein (NP), is responsible for this stabilization. The noncognate Ud polymerase complex cannot carry out this stabilization, but it can stabilize CPSF30 binding to a mutated (F103L M106I) cognate Ud NS1A protein. These results suggested that the viral polymerase complex is an integral component of the CPSF30-NS1A protein complex in infected cells even when the cognate NS1A protein contains F103 and M106, and we show that this is indeed the case. Finally, we show that cognate PA protein and NP, but not cognate PB1 and PB2 proteins, are required for stabilizing the CPSF30-NS1A complex, indicating that the NS1A protein interacts primarily with its cognate PA protein and NP in a complex that includes the cellular CPSF30 protein.  相似文献   

17.
MRP8 and MRP14 are members of the S-100 family of Ca2+-binding proteins and are expressed by granulocytes and monocytes. Members of this family have been described to be involved in membrane and cytoskeleton interactions; we therefore studied the subcellular distribution of MRP8/MRP14 in cultured human monocytes at the ultrastructural level. Monospecific rabbit antisera against MRP8 and MRP14 and a monoclonal antibody (moAb 27E10), which exclusively recognizes the MRP8/MRP14 heterodimer but not the monomers, were used in both immunoperoxidase/preembedding-and immunogold/cryotechniques. Comparing non-stimulated monocytes with Ca2+ ionophore A23187-treated cells, we could demonstrate that MRP8 and MRP14 associate with membrane and cytoskeletal structures in a Ca2+-dependent manner. Employing moAb 27E10, MRP8/MRP14 complexes were shown to be translocated to these cellular components. In addition, immunogold double-labelling experiments revealed a clear co-localization of MRP8/MRP14 complexes with the type III intermediate filament vimentin. Analysis of immunogold-labelled cryosections of renal allografts after acute vascular rejection demonstrated that a subpopulation of infiltrating macrophages showed a similar association of MRP8/MRP14 to the cytoskeleton in situ; this finding emphasizes the in vivo relevance of our observations. We conclude that Ca2+-dependent translocation of MRP8/MRP14 occurs to distinct subcellular components suggesting a role of these proteins for the modulation of cytoskeletal and membrane interactions.  相似文献   

18.
Ribonuclease (RNase) P is a site‐specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix‐loop‐helix protein‐binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 Å. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.  相似文献   

19.
20.
RNase P, the enzyme responsible for 5-end processing of tRNAs and 4.5S RNA, has been extensively characterized fromE. coli. The RNA component ofE. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号