首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Migrating movement of a pseudoplasmodium (slug) of the cellular slime mouldDictyostelium discoideum was analyzed using a time-lapse video tape recorder. Since slugs usually migrated with repeated interruptions of advance, migrating velocities were measured only within a period of forward movement. On the basis of some known facts and assumptions, a dynamical model for slug movement was formulated, which consists of motive force generated by slug cells against their intrinsic resistance and resistance of slime sheath at the tip. The migrating velocity of a slug depended neither on its width nor its volume, but solely on its length. Under any experimental conditions tested, a linear relationship always held between reciprocals of the two variables. The results were in good agreement with predictions of the model. Quantitative analyses of experimental results by the use of the model lead to the conclusions that a decrease in velocity at a low temperature is due to an increase in resistance of slime sheath at the tip, but that a decrease in velocity during prolonged migration is due to a decrease in motive force of constituent cells. An anterior isolate dissected from a slug migrated at a velocity greater than that of an intact slug of the same length. This was interpreted by the model to be due to the fact that the anterior cells have greater motive forces and intrinsic resistances than the posterior cells. The heterogeneous distributions of the two variables in the cell mass is discussed in reference to the mechanism of sorting out of cells.  相似文献   

2.
In the slug stage of the cellular slime mold Dictyostelium discoideum, prespore cells and four types of prestalk cells show a well-defined spatial distribution in a migrating slug. We have developed a continuous mathematical model for the distribution pattern of these cell types based on the balance of force in individual cells. In the model, cell types are assumed to have different properties in cell motility, i.e. different motive force, the rate of resistance against cell movement, and diffusion coefficient. Analysis of the stationary solution of the model shows that combination of these parameters and slug speed determines the three-dimensional shape of a slug and cell distribution pattern within it. Based on experimental data of slug motive force and velocity measurements, appropriate sets of parameters were chosen so that the cell-type distribution at stationary state matches the distribution in real slugs. With these parameters, we performed numerical calculation of the model in two-dimensional space using a moving particle method. The results reproduced many of the basic features of slug morphogenesis, i.e. cell sorting, translocation of the prestalk region, elongation of the slug, and its steady migration.  相似文献   

3.
Migration of Dictyostelium discoideum slugs results from coordinated movement of their constituent cells. It is generally assumed that each cell contributes to the total motive force of the slug. However, the basic mechanisms by which mechanical forces (traction and resistive forces) are transmitted to the substrate, their magnitude and their location, are largely unknown. In this work, we performed detailed observations of cell movements by fluorescence microscopy using two-dimensional (2D) slugs. We show that 2D slugs share most of the properties of 3D ones. In particular, waves of movement propagate in long 2D slugs, and slug speed correlates with slug length as found in 3D slugs. We also present the first measurements of the distribution of forces exerted by 2D and 3D slugs using the elastic substrate method. Traction forces are mainly exerted in the central region of the slug. The large perpendicular forces around slug boundary and the existence of parallel resistive forces in the tip and/or the tail suggest an important role of the sheath in the transmission of forces to the substrate.  相似文献   

4.
A three-dimensional mathematical model is used to determine the effects of adhesion and cell signalling on cell movements during the aggregation and slug stages of Dictyostelium discoideum (Dd) and to visualize cell sorting. The building blocks of the model are individual deformable ellipsoidal cells, where movement depends on internal parameter state (cell size and stiffness) and on external cues from the neighboring cells, extracellular matrix, and chemical signals. Cell movement and deformation are calculated from equations of motion using the total force acting on each cell, ensuring that forces are balanced. The simulations show that the sorting patterns of prestalk and prespore cells, emerging during the slug stage, depend critically on the type of cell adhesion and not just on chemotactic differences between cells. This occurs because cell size and stiffness can prevent the otherwise faster cells from passing the slower cells. The patterns are distinctively different when the prestalk cells are more or less adhesive than the prespore cells. These simulations suggest that sorting is not solely due to differential chemotaxis, and that differences in both adhesion strength and type between different cell types play a very significant role, both in Dictyostelium and other systems.  相似文献   

5.
Copines are calcium-dependent membrane-binding proteins found in many eukaryotic organisms. We are studying the function of copines using the model organism, Dictyostelium discoideum. When under starvation conditions, Dictyostelium cells aggregate into mounds that become migrating slugs, which can move toward light and heat before culminating into a fruiting body. Previously, we showed that Dictyostelium cells lacking the copine A (cpnA) gene are not able to form fruiting bodies and instead arrest at the slug stage. In this study, we compared the slug behavior of cells lacking the cpnA gene to the slug behavior of wild-type cells. The slugs formed by cpnA- cells were much larger than wild-type slugs and exhibited no phototaxis and negative thermotaxis in the same conditions that wild-type slugs exhibited positive phototaxis and thermotaxis. Mixing as little as 5% wild-type cells with cpnA- cells rescued the phototaxis and thermotaxis defects, suggesting that CpnA plays a specific role in the regulation of the production and/or release of a signaling molecule. Reducing extracellular levels of ammonia also partially rescued the phototaxis and thermotaxis defects of cpnA- slugs, suggesting that CpnA may have a specific role in regulating ammonia signaling. Expressing the lacZ gene under the cpnA promoter in wild-type cells indicated cpnA is preferentially expressed in the prestalk cells found in the anterior part of the slug, which include the cells at the tip of the slug that regulate phototaxis, thermotaxis, and the initiation of culmination into fruiting bodies. Our results suggest that CpnA plays a role in the regulation of the signaling pathways, including ammonia signaling, necessary for sensing and/or orienting toward light and heat in the prestalk cells of the Dictyostelium slug.  相似文献   

6.
Pieces of coverslip glass, polycarbonate filters, or coverslip plastic, coated with fibrinogen or type I collagen, were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Migratory events were then analyzed by phase contrast and electron microscopy. Phase-contrast microscopy revealed two types of lamellipodia on leading edge cells: one which was attached broadly to the cell body and one attached by a long, thin stalk. Stalkless forms were by far the most common type and we believe they provide the motive force for cell movement. Stalked-forms often moved at distinct angles to the direction of sheet movement, suggesting that they may be sensory appendages. Phase photographs of the leading edge of migrating sheet 4 hours and 8 hours after implantation showed that all cells that were on the leading edge at 4 hours continued to advance for the next 4 hours, demonstrating clearly that under these circumstances the distalmost cells do not become immobile upon contact with the substrate as others have suggested. TEM revealed that migrating sheets were modified monolayers and that regardless of proximodistal location in the sheet, and even in the intact skin adjoining a wound, each epidermal cell adjacent to the substrate puts forth a lamellipodium which underlaps the cell in front. This and the behavior of sheets as they were teased or pulled from the implant suggest strongly that all basal cells contribute to movement of the sheet by interacting with the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cyclic AMP is known to act as a chemotactic agent that directs the movement of aggregating Dictyostelium discoideum cells. Its role in the multicellular organization of this organism was studied with special reference to the polarized movement of the migrating pseudoplasmodium (slug). The results showed that the tip of the slug has the ability to function as an aggregation center, and that slug cells are chemotactically sensitive to cyclic AMP. The addition of calcium or magnesium appeared to enhance formation of cell streams, thus facilitating detection of chemotactic response of slug cells, but this addition was not required for the response itself. These indicate that the polar movement of the slug may be principally controlled by cyclic AMP.  相似文献   

8.
9.
A mathematical model for cell sorting and migration in the slug stage of cellular slime moldsDictyostelium discoideum is proposed. Assuming that a slug is a “mixed fluid” of prespore and prestalk cells, a set of equations which describe the dynamics of cell distribution, internal pressure and velocity of hte slug are derived from the balance formula of individual cell movement. These equations are analyzed to obtain the spatial patterns of the two types of cells at dynamical equilibrium and the relationship between the migration velocity and the slug size. The body shape of the elongated slug at the migrating stage is also investigated, taking account of the law of surface tension. The stable shapes of slugs with different volumes are explicity obtaained and the existence of critical size of a slug is suggested.  相似文献   

10.
To determine why Ld antigens are expressed on the cell surface at levels three to four times lower than Dd or Kd antigens, pulse-chase experiments were used to compare their rates of biosynthesis and processing. Electrophoresis on sodium dodecyl sulfate gradient polyacrylamide gels resolved immunoprecipitates of each of these histocompatibility complex class I molecules into a slower and faster species. During the chase period, the faster migrating species appeared to be converted to the slower migrating species in a time-dependent manner. However, the conversion of Ld from the faster to the slower migrating species proceeded significantly more slowly than did the conversion of either Dd or Kd. Endoglycosidase H sensitivity and cell surface radiolabeling were used to determine the glycosylation state and cell location of each species of Ld and Dd. The results from these experiments, along with the pulse-chase studies and cytofluorometric analyses, suggest that Ld possesses a much slower rate of processing from a faster migrating, high mannose-bearing species to a slower migrating, complex oligosaccharide-bearing species found on the cell surface. Analysis of the beta 2-microglobulin (beta 2-m) association confirmed that Ld is associated with less beta 2-m than Dd. To localize the structures on class I molecules influencing their surface expression, rate of processing, and beta 2-m association, the Ddm1 molecule was analyzed. The Ddm1 molecule of the mutant B10.D2-H-2dm1 has previously been shown to be a chimeric Dd (amino-terminal)/Ld (carboxyl-terminal) polypeptide. The surface expression, processing and beta 2-m association of Ddm1 were found to be similar to Dd rather than Ld, suggesting that each of these phenomena are influenced by protein structure in the amino terminus.  相似文献   

11.
The Dictyostelium slug lays down curved marks in its slime sheath trail as it migrates across an agar substrate. These 'footprints' are caused by elevation of the slug anterior as it initiates a period of aerial migration and can be used as a measure of the slug's propensity for this behavior. A variety of factors have been found to affect the number of footprints created per distance migrated. Smaller slugs produce a higher incidence of footprints than larger slugs. Migration in the light and lower temperatures during migration increase footprint incidence. Activated charcoal reduces, while exogenous addition of ammonia increases, the incidence of footprints. Simulation of the three-dimensional (3D) environment of the soil suggests that aerial migration plays a role in the slug's movement through the cavities of its natural environment. A model proposes that aerial migration is initiated by a small group of continually changing prestalk cells that acts as a pacemaker and is moved around the circumference of the slug tip by the rotation of the prestalk cells. As this pacemaker reaches the upper surface of the slug it can initiate aerial migration.  相似文献   

12.
Localization of myosin in slugs of the cellular slime mold Dictyostelium discoideum was investigated by an immunofluorescence technique. Myosin is thought to provide the molecular machinery for cellular movement. We found that myosin could be visualized as c-shaped fluorescence at the cortex of prestalk cells in a migrating slug, and that the open regions of all c-shaped fluorescence point in the direction of the slug's migration. We reported previously that the c-shaped fluorescence of myosin can be seen at the cortex of the tail region of actively locomoting cells at the unicellular stage (39, 41). These results suggest that prestalk cells move actively in the slug, and that their direction of movement, which can be identified from the polarity of c-shaped fluorescence, correspond with the direction of the slug's migration. The distribution of c-shaped fluorescence in slugs during migration, phototaxis and avoidance of ammonia strongly suggests that the slug's behavior is controlled by the concerted movement of prestalk cells.  相似文献   

13.
Cellular responses to mechanical perturbation are vital to cell physiology. In particular, migrating cells have been shown to sense substrate stiffness and alter cell morphology and speed. Zyxin is a focal adhesion protein that responds to external mechanical forces; however, the mechanisms of zyxin recruitment at force-bearing sites are unknown. Using force-sensing microfabricated substrates, we simultaneously measured traction force and zyxin recruitment at force-bearing sites. GFP-tagged zyxin accumulates at force-bearing sites at the leading edge, but not at the trailing edge, of migrating epithelial cells. Zyxin recruitment at force-bearing sites depends on Rho-kinase and myosin II activation, suggesting that zyxin responds not only to the externally applied force, as previously shown, but also to the internally generated actin-myosin force. Zyxin in turn recruits vasodilator-stimulated phosphoprotein, a regulator of actin assembly, to force-bearing sites. To dissect the domains of zyxin that are essential for this unique force-dependent accumulation, we generated two zyxin truncation mutants: one lacking the LIM domain (ΔLIM) and one containing only the LIM domain with all three LIM motifs (LIM). GFP-tagged ΔLIM does not localize to the force-bearing sites, but GFP-tagged zyxin LIM-domain is sufficient for the recruitment to and dynamics at force-bearing focal adhesions. Furthermore, one or two LIM motifs are not sufficient for force-dependent accumulation, suggesting that all three LIM motifs are required. Therefore, the LIM domain of zyxin recruits zyxin to force-bearing sites at the leading edge of migrating cells.  相似文献   

14.
This study aims at improving the understanding of mechanisms responsible for cell sensitivity to extracellular environment. We explain how substrate mechanical properties can modulate the force regulation of cell sensitive elements primarily adhesion sites. We present a theoretical and experimental comparison between two radically different approaches of the force regulation of adhesion sites that depends on their either stationary or dynamic behavior. The most classical stationary model fails to predict cell sensitivity to substrate stiffness whereas the dynamic model predicts extracellular stiffness dependence. This is due to a time dependent reaction force in response to actomyosin traction force exerted on cell sensitive elements. We purposely used two cellular models, i.e., alveolar epithelial cells and alveolar macrophages exhibiting respectively stationary and dynamic adhesion sites, and compared their sensitivity to theoretical predictions. Mechanical and structural results show that alveolar epithelial cells exhibit significant prestress supported by evident stress fibers and lacks sensitivity to substrate stiffness. On the other hand, alveolar macrophages exhibit low prestress and exhibit sensitivity to substrate stiffness. Altogether, theory and experiments consistently show that adhesion site dynamics and cytoskeleton prestress control cell sensitivity to extracellular environment with an optimal sensitivity expected in the intermediate range.  相似文献   

15.
Miyoshi H  Masaki N  Tsuchiya Y 《Protoplasma》2003,222(3-4):175-181
Summary. We investigated the behavior of migration of Amoeba proteus in an isotropic environment. We found that the trajectory in the migration of A. proteus is smooth in the observation time of 500-1000 s, but its migration every second (the cell velocity) on the trajectory randomly changes. Stochastic analysis of the cell velocity and the turn angle of the trajectory has shown that the histograms of the both variables well fit to Gaussian curves. Supposing a simple model equation for the cell motion, we have estimated the motive force of the migrating cell, which is of the order of piconewton. Furthermore, we have found that the cell velocity and the turn angle have a negative cross-correlation coefficient, which suggests that the amoeba explores better environment by changing frequently its migrating direction at a low speed and it moves rectilinearly to the best environment at a high speed. On the other hand, the model equation has simulated the negative correlation between the cell velocity and the turn angle. This indicates that the apparently rational behavior comes from intrinsic characteristics in the dynamical system where the motive force is not torquelike.  相似文献   

16.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

17.
Myxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors. Although the mechanism of gliding motility is still under investigation, recent experiments suggest that there are two possible mechanisms underlying force production for cell motility: the focal adhesion mechanism and the helical rotor mechanism, which differ in the biophysics of the cell–substrate interactions. Whereas the focal adhesion model predicts an elastic coupling, the helical rotor model predicts a viscous coupling. Using a combination of computational modeling, imaging, and force microscopy, we find evidence for elastic coupling in support of the focal adhesion model. Using a biophysical model of the M. xanthus cell, we investigated how the mechanical interactions between cells are affected by interactions with the substrate. Comparison of modeling results with experimental data for cell-cell collision events pointed to a strong, elastic attachment between the cell and substrate. These results are robust to variations in the mechanical and geometrical parameters of the model. We then directly measured the motor-substrate coupling by monitoring the motion of optically trapped beads and find that motor velocity decreases exponentially with opposing load. At high loads, motor velocity approaches zero velocity asymptotically and motors remain bound to beads indicating a strong, elastic attachment.  相似文献   

18.
K. Inouye 《Protoplasma》1984,121(3):171-177
Summary The motive force of the migrating slug of the cellular slime mouldDictyostelium discoideum was measured by the use of centrifugal force. Changes in shape of the slugs due to the use of centrifugal force were prevented by letting them migrate in an agar capillary. The motive force thus obtained was proportional to the slug volume, the value per unit volume being 5.8×106 dyne/cm3 (58 N/cm3). This is in good agreement with the value measured by the use of hydrostatic pressure.  相似文献   

19.
20.
Single kinesin motor molecules were observed to buckle the microtubules along which they moved in a modified in vitro gliding assay. In this assay a central portion of the microtubule was clamped to the glass substrate via biotin-streptavidin bonds, while the plus end of the microtubule was free to interact with motors adsorbed at low density to the substrate. A statistical analysis of the length of microtubules buckled by single motors showed a decreasing probability of buckling for loads greater than 4-6 pN parallel to the filament. This is consistent with kinesin stalling forces found in other experiments. A detailed analysis of some buckling events allowed us to estimate both the magnitude and direction of the loading force as it developed a perpendicular component tending to pull the motor away from the microtubule. We also estimated the motor speed as a function of this changing vector force. The kinesin motors consistently reached unexpectedly high speeds as the force became nonparallel to the direction of motor movement. Our results suggest that a perpendicular component of load does not hinder the kinesin motor, but on the contrary causes the motor to move faster against a given parallel load. Because the perpendicular force component speeds up the motor but does no net work, perpendicular force acts as a mechanical catalyst for the reaction. A simple explanation is that there is a spatial motion of the kinesin molecule during its cycle that is rate-limiting under load; mechanical catalysis results if this motion is oriented away from the surface of the microtubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号