首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catabolite Repression and Pyruvate Metabolism in Escherichia coli   总被引:14,自引:9,他引:5       下载免费PDF全文
A study was made of the reactions involved in the cellular regulatory function known as catabolite repression. These studies employed the glucose-repressible, beta-galactosidase system of Escherichia coli and involved an investigation of glucose dissimilation under cultural conditions capable of permitting or preventing expression of catabolite repression. The results indicated that reactions associated with pyruvate decarboxylation are of particular importance in influencing repression. This conclusion was based on results obtained by measurement of differential rates of C(14)O(2) evolution from specifically labeled (14)C-glucose substrates, and by measurements of H(2) evolution during anaerobic growth. Catabolite repression measured in relation to steady-state growth rates indicated that the repression mechanism may in fact be a direct consequence of a cell's energy balance, as dictated by the production from pyruvate of "high-energy" molecules such as adenosine triphosphate or acetyl-coenzyme A. The apparent involvement of pyruvate metabolism in both the energetics and the expression of catabolite repression in E. coli is consistent with this view.  相似文献   

2.
Synthesis of penicillinamidohydrolase (penicillin acylase, EC 3.5.1.11) in Escherichia coli is subjected to the absolute catabolite repression by glucose and partial repression by acetate. Both types of catabolite repression of synthesis of the enzyme in Escherichia coli are substantially influenced by cyclic 3',5'-adenosinemonophosphate (cAMP). Growth diauxie in a mixed medium containing glucose and phenylacetic acid serving as carbon and energy sources is overcome by cAMP. cAMP does not influence the basal rate of the enzyme synthesis (without the inducer). Derepression of synthesis of penicillinamidohydrolase by cAMP in a medium with glucose and inducer (phenylacetic acid) is associated with utilization of the inducer, due probably to derepression of other enzymes responsible for degradation of phenylacetic acid. Lactate can serve as a "catabolically neutral" source of carbon suitable for the maximum production of penicillinamidohydrolase. The gratuitous induction of the enzyme synthesis in a medium with lactate as the carbon and energy source and with phenylacetic acid is not influenced by cAMP; however, cAMP overcomes completely the absolute catabolite repression of the enzyme synthesis by glucose.  相似文献   

3.
Loomis, William F., Jr. (Massachusetts Institute of Technology, Cambridge, Mass.), and Boris Magasanik. Nature of the effector of catabolite repression of beta-galactosidase in Escherichia coli. J. Bacteriol. 92:170-177. 1966.-Many carbon sources were found to give rise to catabolite repression of beta-galactosidase in a mutant strain of Escherichia coli lacking hexose phosphate isomerase activity. Compounds containing glucose or galactose cannot be formed from several of these carbon sources in this mutant strain, and, therefore, appear not to be required for catabolite repression of beta-galactosidase. Glucose was observed to elicit catabolite repression of beta-galactosidase in another mutant strain under conditions in which the formation of compounds of the citric acid cycle is inhibited. If catabolite repression of the lac operon is mediated by a single compound, it appears that the compound is related to the pentoses and trioses of intermediary metabolism. The repression of beta-galactosidase by galactose in galactokinase negative strains was shown to be independent of the gene, CR, which determines catabolite sensitivity of the lac operon, and to be dependent on a functional i gene.  相似文献   

4.
Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for beta-galactosidase in the presence of glucose, although repression of beta-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.  相似文献   

5.
1. Acute transient catabolite repression of beta-galactosidase synthesis, observed when glucose is added to glycerol-grown cells of Escherichia coli (Moses & Prevost, 1966), requires the presence of a functional operator gene (o) in the lactose operon. Total deletion of the operator gene abolished acute transient repression, even in the presence of a functional regulator gene (i). 2. Regulator constitutives (i(-)) also show transient repression provided that the operator gene is functional. Regulator deletion mutants (i(del)), with which to test specifically the role of the i gene, have not so far been available. 3. The above mutants, showing various changes in the lactose operon, show no alteration in the effect of glucose on induced tryptophanase synthesis. Glucose metabolism, as measured in terms of the release of (14)CO(2) from [1-(14)C]glucose and [6-(14)C]glucose, also showed no differences between strains exhibiting or not exhibiting transient repression. This suggests no change in the operation of the pentose phosphate cycle, a metabolic activity known to be of paramount importance for glucose repression of beta-galactosidase synthesis (Prevost & Moses, 1967). 4. Chronic permanent repression by glucose of beta-galactosidase synthesis (less severe in degree than acute transient repression) persists in strains in which transient repression has been genetically abolished. Constitutive alkaline-phosphatase synthesis, which shows no transient repression, also demonstrates chronic permanent repression by glucose. 5. Chloramphenicol repression also persists in mutants with no transient repression, and also affects alkaline phosphatase. It is suggested that chronic permanent repression and chloramphenicol repression are non-specific, and that they do not influence beta-galactosidase synthesis via the regulatory system of the lactose operon.  相似文献   

6.
A decreased intracellular concentration of cAMP is insufficient to account for catabolite repression in Escherichia coli. We show that glucose lowers the amount of cAMP receptor protein (CRP) in cells. A correlation exists between CRP and β-galactosidase levels in cells growing under various conditions. Exogenous cAMP completely eliminates catabolite repression in CRP-overproducing cells, while it does not fully reverse the effect of glucose on β-galactosidase expression in wild-type cells. When the CRP concentration is reduced by manipulating the crp gene, β-galactosidase expression decreases in proportion to the concentration of CRP. These findings indicate that the lowered concentration of CRP caused by glucose is one of the major factors for catabolite repression. We propose that glucose causes catabolite repression by lowering the intracellular levels of both CRP and cAMP.  相似文献   

7.
Cyclic AMP (cAMP) content and the expression of cAMP-dependent phenotypes were positively correlated with respiration capacity in respiration-deficient mutants of Escherichia coli K-12 ("reductive repression," R. Hertz, and J. Bar-Tana, (1982) Arch. Biochem. Biophys. 213, 193-199). Reductive repression in respiration-deficient mutants could not be accounted for by respective changes in either the energy charge of adenine nucleotides or the redox state of pyridine nucleotides but could be ascribed to an increased formation of oxygen radicals under conditions of limited respiration. Scavengers of superoxide radicals eliminated reductive repression in respiration-deficient mutants with a concomitant increase in cAMP content. Such scavengers also effected a partial escape from permanent glucose catabolite repression, thus indicating a possible role played by oxygen radicals in both repression modes.  相似文献   

8.
Catabolite repression of tryptophanase in Escherichia coli   总被引:16,自引:14,他引:2       下载免费PDF全文
Catabolite repression of tryptophanase was studied in detail under various conditions in several strains of Escherichia coli and was compared with catabolite repression of beta-glactosidase. Induction of tryptophanase and beta-galactosidase in cultures grown with various carbon sources including succinate, glycerol, pyruvate, glucose, gluconate, and arabinose is affected differently by the various carbon sources. The extent of induction does not seem to be related to the growth rate of the culture permitted by the carbon source during the course of the experiment. In cultures grown with glycerol as carbon source, preinduced for beta-galactosidase or tryptophanase and made permeable by ethylenediaminetetraacetic acid (EDTA) treatment, catabolite repression of tryptophanase was not affected markedly by the addition of cAMP (3',5'-cyclic adenosine monophosphate). Catabolite repression by glucose was only partially relieved by the addition of cAMP. In contrast, under the same conditions, cAMP completely relieved catabolite repression of beta-galactosidase by either pyruvate or glucose. Under conditions of limited oxygen, induction of tryptophanase is sensitive to catabolite repression; under the same conditions, beta-galactosidase induction is not sensitive to catabolite repression. Induction of tryptophanase in cells grown with succinate as carbon source is sensitive to catabolite repression by glycerol and pyruvate as well as by glucose. Studies with a glycerol kinaseless mutant indicate that glycerol must be metabolized before it can cause catabolite repression. The EDTA treatment used to make the cells permeable to cAMP was found to affect subsequent growth and induction of either beta-galactosidase or tryptophanase much more adversely in E. coli strain BB than in E. coli strain K-12. Inducation of tryptophanase was reduced by the EDTA treatment significantly more than induction of beta-galactosidase in both strains. Addition of 2.5 x 10(-3)m cAMP appeared partially to reverse the inhibitory effect of the EDTA treatment on enzyme induction but did not restore normal growth.  相似文献   

9.
Growth of streptomycin-dependent mutants of Escherichia coli K-12 was insensitive to valine when dihydrostreptomycin was present in a nonlimiting concentration in glucose-salts medium. Acetohydroxy acid synthase was derepressed under these conditions, owing to relaxation of catabolite repression. Valine sensitivity and catabolite repression were restored when streptomycin-dependent E. coli K-12 mutants were grown with limiting dihydrostreptomycin. End product repression of acetohydroxy acid synthase under conditions of relaxed catabolite repression was effected by any two (or more) end products except the combination valine plus isoleucine, which caused derepression. Single end products had no detectable effect on acetohydroxy acid synthase formation.  相似文献   

10.
Transient Repression of the lac Operon   总被引:20,自引:9,他引:11       下载免费PDF全文
Severe transient repression of constitutive or induced beta-galactosidase synthesis occurs upon the addition of glucose to cells of Escherichia coli growing on glycerol, succinic acid, or lactic acid. Only mutants particularily well adapted to growth on glucose exhibit this phenomenon when transferred to a glucose-containing medium. No change in ribonucleic acid (RNA) metabolism was observed during transient repression. We could show that transient repression is pleiotropic, affecting all products of the lac operon. It occurs in a mutant insensitive to catabolite repression. It is established much more rapidly than catabolite repression, and is elicited by glucose analogues that are phosphorylated but not further catabolized by the cell. Thus, transient repression is not a consequence of the exclusion of inducer from the cell, does not require catabolism of the added compound, and does not involve a gross change in RNA metabolism. We conclude that transient repression is distinct from catabolite repression.  相似文献   

11.
12.
Acetylated amino sugars, normally used in the biosynthesis of cell walls and cell membranes, were found to play a role as corepressors for catabolite repression of the lac operon in Escherichia coli. This conclusion was derived from studies conducted on mutants of E. coli that were able to assimilate an exogenous source of N-acetylglucosamine (AcGN) but were unable to dissimilate or grow on this compound. At concentrations less than 10(-4)m, AcGN caused severe catabolite repression of beta-galactosidase synthesis in cultures grown under either nonrepressed or partially repressed conditions. This repression occurred in the absence of any effect of AcGN on either the carbon and energy metabolism or the growth of the organism. In addition, this repression by AcGN occurred in a mutant strain that is constitutive for beta-galactosidase production, demonstrating that the AcGN effect does not involve the uptake of inducer. This model for the corepressor system of catabolite repression is discussed in relation to the existing theories on repression of the lac operon.  相似文献   

13.
Phenomenon of transient repression in Escherichia coli   总被引:11,自引:8,他引:3  
Paigen, Kenneth (Roswell Park Memorial Institute, Buffalo, N.Y.). Phenomenon of transient repression in Escherichia coli. J. Bacteriol. 91:1201-1209. 1966.-A family of mutants has been obtained in Escherichia coli K-12 in which beta-galactosidase is not inducible for approximately one cell generation after the cells are transferred to glucose from other carbon sources. After that period; the enzyme can be induced at the level appropriate to glucose-grown cultures of the parent cells. Among a wide variety of carbon sources, the only one capable of eliciting a state of transient repression is glucose. Conversely, transient repression occurs when cells are transferred to glucose from any of a variety of other carbon sources. The only exceptions to this so far discovered are lactose, gluconate, and xylose. Susceptibility to transient repression in mutants can also be induced in glucose-grown cells by a period of starvation. Mutant cells which have become susceptible to transient repression lose susceptibility in the presence of glucose only when they are under conditions which permit active protein synthesis. The presence of an inducer of beta-galactosidase is not required during this time, nor does pre-induction for beta-galactosidase diminish the susceptibility of mutants. At least two other catabolite repression-sensitive enzymes (galactokinase and tryptophanase) are also sensitive to transient repression, and the two phenomena are probably related. The absolute specificity of glucose and the pattern of response seen after growth in different carbon sources suggest that the endogenous metabolite which produces these repressions is far more readily derived from glucose in metabolism than it is from any other exogenous carbon source.  相似文献   

14.
Catabolite repression of the lac operon. Repression of translation   总被引:3,自引:2,他引:1  
  相似文献   

15.
Cultures of Escherichia coli K-12 grown on glucose or gluconate under aerobic conditions exhibited catabolite repression of beta-galactosidase synthesis. Depression occurred when these cultures were subjected to anaerobic shock. These states of repression and depression were found to be associated with low and high differential rates of cyclic AMP synthesis, respectively. This observation is consistent with the view that cyclic AMP plays a central role in the catabolite repression phenomenon. We report here, however, that identical stages of repression and derepression occur in mutant strains possessing cya crp(Csm) genotypes and therefore unable to synthesize cyclic AMP. These results suggest that cyclic AMP is not the sole regulator involved in catabolite repression.  相似文献   

16.
Effect of Amino Sugars on Catabolite Repression in Escherichia coli   总被引:6,自引:5,他引:1  
N-acetylglucosamine was found to be a good repressor source for catabolite repression of the beta-galactosidase system in Escherichia coli. It was found capable of increasing the severity of repression by glucose or gluconate when included in the medium with either of these substrates. N-acetylglucosamine was shown to be assimilated under these conditions, but had no effect on culture growth rates. Its influence on catabolite repression was not altered by growth in the presence of inhibiting levels of penicillin. These findings indicated that catabolite repression may be associated with certain reactions of amino sugar metabolism. A working model has been formulated along these lines and will be used to explore this possible relationship further.  相似文献   

17.
By transposon Tn917 mutagenesis, 16 mutants of Staphylococcus xylosus were isolated that showed higher levels of beta-galactosidase activity in the presence of glucose than the wild-type strain. The transposons were found to reside in three adjacent locations in the genome of S. xylosus. The nucleotide sequence of the chromosomal fragment affected by the Tn917 insertions yielded an open reading frame encoding a protein with a size of 328 amino acids with a high level of similarity to glucose kinase from Streptomyces coelicolor. Weaker similarity was also found to bacterial fructokinases and xylose repressors of gram-positive bacteria. The gene was designated glkA. Immediately downstream of glkA, two open reading frames were present whose deduced gene products showed no obvious similarity to known proteins. Measurements of catabolic enzyme activities in the mutant strains grown in the presence or absence of sugars established the pleiotropic nature of the mutations. Besides beta-galactosidase activity, which had been used to detect the mutants, six other tested enzymes were partially relieved from repression by glucose. Reduction of fructose-mediated catabolite repression was observed for some of the enzyme activities. Glucose transport and ATP-dependent phosphorylation of HPr, the phosphocarrier of the phosphoenolpyruvate:carbohydrate phosphotransferase system involved in catabolite repression in gram-positive bacteria, were not affected. The cloned glkA gene fully restored catabolite repression in the mutant strains in trans. Loss of GlkA function is thus responsible for the partial relief from catabolite repression. Glucose kinase activity in the mutants reached about 75% of the wild-type level, indicating the presence of another enzyme in S. xylosus. However, the cloned gene complemented an Escherichia coli strain in glucose kinase. Therefore, the glkA gene encodes a glucose kinase that participates in catabolite repression in S. xylosus.  相似文献   

18.
In Escherichia coli anaerobic growth lowers the basal or induced levels of numerous enzymes associated with aerobic metabolism. Mutations in arcA (dye) at min 0 relieve this pleiotropic anaerobic repression and render the cell sensitive to the redox dye toluidine blue. In this study we identified a second pleiotropic control gene, arcB, at min 69.5. Mutations, including a deletion, in this gene also relieved the anaerobic repression and caused sensitivity to toluidine blue. Mutations in arcA or arcB did not significantly change the catabolite repression of the target phi(sdh-lacZ) operon, in which lacZ is fused to a structural gene for succinate dehydrogenase, nor did the mutations strikingly influence the pattern of excretion products during glucose fermentation. The presence of arcA+ in a multicopy plasmid restored anaerobic repression in arcB mutants, as indicated by the expression of phi(sdh-lacZ). The arcB product might be a sensor protein for the redox or energy state of the arc regulatory system.  相似文献   

19.
The regulation of the penicillin acylase in proteus rettgeri ATCC 31052 was compared with that of the enzyme in Escherichia coli ATCC 9637. Unlike the E. coli acylase, the P. rettgeri enzyme was not induced by phenylacetic acid, nor was it subject to catabolite repression by glucose. The P. rettgeri acylase appears to be expressed constitutively but is subject to repression by the C4-dicarboxylic acids of the tricarboxylic acid cycle, succinate, fumarate, and malate.  相似文献   

20.
The ability of N-acetylglucosamine to enhance catabolite repression by glucose was studied by using cultures grown on a combination of these substrates. Under these conditions, it was shown that two-thirds of the N-acetylglucosamine utilized was routed into dissimilatory pathways, whereas the remaining one-third was channeled into biosynthesis. It was established that over 50% of the N-acetylglucosamine assimilated was incorporated directly into amino sugar polymers. It was also shown that this exogenous supply of N-acetylglucosamine was in fact used preferentially over glucose as the precursor for amino sugar polymer biosynthesis. These findings provided support for the prediction that catabolite repression in Escherichia coli may be interrelated with certain reactions involved in amino sugar biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号