首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major 97-aa timothy grass (Phleum pratense) allergen Phl p 3 was recently isolated from an extract of timothy grass pollen. Sequence comparison classifies this protein as a group 3 allergen. The solution structure of Phl p 3 as determined by nuclear magnetic resonance spectroscopy reveals that the protein consists of a core of hydrophobic amino-acid side chains from two beta-sheets of five and four anti-parallel beta-strands, respectively. This conformation is very similar to the crystal structure published for Phl p 2 and strongly resembles the known conformation of the carboxy-terminal domain of Phl p 1, the major difference being the loop orientations. Phl p 2 and Phl p 3 show virtually identical immunoreactivity, and comparison of the charged surface amino acids of the two proteins gives initial clues as to the IgE recognition epitopes of these proteins.  相似文献   

2.
The recognition of conformational epitopes on respiratory allergens by IgE Abs is a key event in allergic inflammation. We report a molecular strategy for the conversion of allergens into vaccines with reduced allergenic activity, which is based on the reassembly of non-IgE-reactive fragments in the form of mosaic proteins. This evolution process is exemplified for timothy grass pollen-derived Phl p 2, a major allergen for more than 200 million allergic patients. In a first step, the allergen was disrupted into peptide fragments lacking IgE reactivity. cDNAs coding for these peptides were reassembled in altered order and expressed as a recombinant mosaic molecule. The mosaic molecule had lost the three-dimensional structure, the IgE reactivity, and allergenic activity of the wild-type allergen, but it induced high levels of allergen-specific IgG Abs upon immunization. These IgG Abs crossreacted with group 2 allergens from other grass species and inhibited allergic patients' IgE binding to the wild-type allergen. The mosaic strategy is a general strategy for the reduction of allergenic activity of protein allergens and can be used to convert harmful allergens into safe vaccines.  相似文献   

3.
On the basis of IgE epitope mapping data, we have produced three allergen fragments comprising aa 1-33, 1-57, and 31-110 of the major timothy grass pollen allergen Phl p 6 aa 1-110 by expression in Escherichia coli and chemical synthesis. Circular dichroism analysis showed that the purified fragments lack the typical alpha-helical fold of the complete allergen. Superposition of the sequences of the fragments onto the three-dimensional allergen structure indicated that the removal of only one of the four helices had led to the destabilization of the alpha helical structure of Phl p 6. The lack of structural fold was accompanied by a strong reduction of IgE reactivity and allergenic activity of the three fragments as determined by basophil histamine release in allergic patients. Each of the three Phl p 6 fragments adsorbed to CFA induced Phl p 6-specific IgG Abs in rabbits. However, immunization of mice with fragments adsorbed to an adjuvant allowed for human use (AluGel-S) showed that only the Phl p 6 aa 31-110 induced Phl p 6-specific IgG Abs. Anti-Phl p 6 IgG Abs induced by vaccination with Phl p 6 aa 31-110 inhibited patients' IgE reactivity to the wild-type allergen as well as Phl p 6-induced basophil degranulation. Our results are of importance for the design of hypoallergenic allergy vaccines. They show that it has to be demonstrated that the hypoallergenic derivative induces a robust IgG response in a formulation that can be used in allergic patients.  相似文献   

4.
Approximately 400 million allergic patients are sensitized against group 1 grass pollen allergens, a family of highly cross-reactive allergens present in all grass species. We report the eukaryotic expression of the group 1 allergen from Timothy grass, Phl p 1, in baculovirus-infected insect cells. Domain elucidation by limited proteolysis and mass spectrometry of the purified recombinant glycoprotein indicates that the C-terminal 40% of Phl p 1, a major IgE-reactive segment, represents a stable domain. This domain also exhibits a significant sequence identity of 43% with the family of immunoglobulin domain-like group 2/3 grass pollen allergens. Circular dichroism analysis demonstrates that insect cell-expressed rPhl p 1 is a folded species with significant secondary structure. This material is well behaved and is adequate for the growth of crystals that diffract to 2.9 A resolution. The importance of conformational epitopes for IgE recognition of Phl p 1 is demonstrated by the superior IgE recognition of insect-cell expressed Phl p 1 compared to Escherichia coli-expressed Phl p 1. Moreover, insect cell-expressed Phl p 1 induces potent histamine release and leads to strong up-regulation of CD203c in basophils from grass pollen allergic patients. Deglycosylated Phl p 1 frequently exhibits higher IgE binding capacity than the recombinant glycoprotein suggesting that rather the intact protein structure than carbohydrate moieties themselves are important for IgE recognition of Phl p 1. This study emphasizes the important contribution of conformational epitopes for the IgE recognition of respiratory allergens and provides a paradigmatic tool for the structural analysis of the IgE allergen interaction.  相似文献   

5.
Henzl MT  Davis ME  Tan A 《Biochemistry》2008,47(30):7846-7856
The timothy grass allergen, Phl p 7, was studied by calorimetry, spectroscopy, and analytical ultracentrifugation. As judged by isothermal titration calorimetry (ITC), the protein binds Ca (2+) cooperatively with stepwise macroscopic association constants of 1.73 x 10 (6) and 8.06 x 10 (6) M (-1). By contrast, Mg (2+) binding is sequential with apparent macroscopic association constants of 2.78 x 10 (4) and 170 M (-1). Circular dichroism and ANS fluorescence data suggest that Ca (2+) binding provokes a major conformational change that does not occur upon Mg (2+) binding. Conformational stability was assessed by differential scanning calorimetry (DSC). In phosphate-buffered saline (PBS) containing EDTA, the apoprotein undergoes two-state denaturation with a T m of 78.4 degrees C. In the presence of 0.02 mM Ca (2+), the T m exceeds 120 degrees C. Phl p 7 is known to crystallize as a domain-swapped dimer at low pH. However, analytical ultracentrifugation data indicate that the protein is monomeric in neutral solution at concentrations exceeding 1.0 mM, in both the apo and Ca (2+)-bound states.  相似文献   

6.
Phl p 5, a 29 kDa major allergen from timothy grass pollen, is one of the most reactive members of group 5 allergens. Its sequence comprises two repeats of a novel alanine-rich motif (AR) whose structure and allergenic response are still mostly unknown. We report here a structural characterization of an immunodominant fragment of Phl p 5, Phl p 5(56-165) which comprises the first AR repeat. Recombinant (r)Phl p 5(56-165) was expressed in Escherichia coli, purified to homogeneity and shown to be sufficient to react with serum IgE from 90% of grass pollen allergic patients. Using NMR spectroscopy, we show conclusively that the fragment forms a compact globular domain which is, however, prone to degradation with time. The rPhl p 5(56-165) fold consists of a four-helix bundle held together by hydrophobic interactions between the aromatic rings and aliphatic side chains. This evidence gives clear indications about the structure of the full-length Phl p 5 and provides a rational basis for finding ways to stabilize the fold and designing therapeutic vaccines against grass pollen allergy.  相似文献   

7.
Allergen-specific immunotherapy is currently based on the administration of allergen extracts containing natural allergens. However, its broad application is limited by the poor quality of these extracts. Based on recombinant allergens, well-defined allergy vaccines for allergen-specific immunotherapy can be produced. Furthermore, they can be modified to reduce their allergenic activity and to avoid IgE-mediated side effects. Here, we demonstrate that the immunogenicity of two grass pollen-derived hypoallergenic allergen derivatives could be increased by engineering them as a single hybrid molecule. We used a hypoallergenic Phl p 2 mosaic, generated by fragmentation of the Phl p 2 sequence and reassembly of the resulting peptides in an altered order, and a truncated Phl p 6 allergen, to produce a hybrid protein. The hybrid retained the reduction of IgE reactivity and allergenic activity of its components as shown by ELISA and basophil activation assays. Immunization with the hybrid molecule demonstrated the increased immunogenicity of this molecule, leading to higher levels of allergen-specific IgG antibodies compared to the single components. These antibodies could inhibit patients' IgE binding to the wild-type allergens. Thus, the described strategy allows the development of safer and more efficacious vaccines for the treatment of grass pollen allergy.  相似文献   

8.
BACKGROUND: Grass pollen allergens are the most important and widespread elicitors of pollen allergy. One of the major plant allergens which millions of people worldwide are sensitized to is Phl p 2, a small protein from timothy grass pollen. Phl p 2 is representative of the large family of cross-reacting plant allergens classified as group 2/3. Recombinant Phl p 2 has been demonstrated by immunological cross-reactivity studies to be immunologically equivalent to the natural protein. RESULTS: We have solved the solution structure of recombinant Phl p 2 by means of nuclear magnetic resonance techniques. The three-dimensional structure of Phl p 2 consists of an all-beta fold with nine antiparallel beta strands that form a beta sandwich. The topology is that of an immunoglobulin-like fold with the addition of a C-terminal strand, as found in the C2 domain superfamily. Lack of functional and sequence similarity with these two families, however, suggests an independent evolution of Phl p 2 and other homologous plant allergens. CONCLUSIONS: Because of the high homology with other plant allergens of groups 1 and 2/3, the structure of Phl p 2 can be used to rationalize some of the immunological properties of the whole family. On the basis of the structure, we suggest possible sites of interaction with IgE antibodies. Knowledge of the Phl p 2 structure may assist the rational structure-based design of synthetic vaccines against grass pollen allergy.  相似文献   

9.
We intend to solve whether or not Phl p 1 can be regarded as a protease. A group reported that Phl p 1 has papain-like properties and later on, that this allergen resembles cathepsin B, while another one demonstrated that Phl p 1 lacks proteinase activity and suggested that the measured activity may rise either from a recombinant Phl p 1 contaminant or as a result of an incompletely purified natural allergen. A third group reported Phl p 1 to act by a non-proteolytic activity mechanism. We report the purification of the natural Phl p 1 by means of hydrophobic interaction, gel filtration and STI-Sepharose affinity chromatographies. The Phl p 1 purity was assessed by silver-stained SDS-PAGE and by ‘in-gel’ and ‘gel-free’ approaches associated to mass spectrometry analyses. The proteolytic activity was measured using Boc–Gln–Ala–Arg–AMC and Z-Phe–Arg–AMC as substrates. While amidolytic activity could be measured with Phl p 1 after rechromatography on gel filtration, it however completely disappeared after chromatography on STI-Sepharose. The contaminant activity co-eluting with Phl p 1 was not affected by cysteine proteases inhibitors and other thiol-blocking agents, by metalloproteases inhibitors and by aspartic proteases inhibitors. However, it was completely inhibited by low molecular weight and proteinaceous serine proteases inhibitors. TLCK, but not TPCK, inhibited the contaminant activity, showing a trypsin-like behavior. The pH and temperature optimum were 8.0 and 37 °C, respectively. These data indicated that Phl p 1 is not a protease. The contaminant trypsin-like activity should be considered when Phl p 1 allergenicity is emphasized.  相似文献   

10.
Group 4 grass pollen allergens represent 60 kDa glycoproteins recognized by 70% of patients sensitive to these pollens. An antiserum against purified Phl p 4 from timothy grass pollen was used to investigate various pollens, fruits, and vegetables for Phl p 4-related allergens by immunogold electron microscopy. In timothy grass, mugwort, and birch pollens, allergens were located in the wall, and in timothy grass and birch pollens additionally in the cytoplasm. In peanut, apple, celery root, and carrot root, only cytoplasmic areas were labeled. Group 4-related allergens thus occur in pollens of unrelated plants and in plant food and may therefore contribute to crossreactivities in patients allergic to various pollens and plant food.  相似文献   

11.
Worldwide more than 200 million individuals are allergic to group 1 grass pollen allergens. We have used the major timothy grass pollen allergen Phl p 1, which cross-reacts with most grass-, corn-, and monocot-derived group 1 allergens to develop a generally applicable strategy for the production of hypoallergenic allergy vaccines. On the basis of the experimentally determined B cell epitopes of Phl p 1, we have synthesized five synthetic peptides. These peptides are derived from the major Phl p 1 IgE epitopes and were between 28-32 amino acids long. We demonstrate by nuclear magnetic resonance that the peptides exhibit no secondary and tertiary structure and accordingly failed to bind IgE antibodies from grass pollen allergic patients. The five peptides, as well as an equimolar mixture thereof, lacked allergenic activity as demonstrated by basophil histamine release and skin test experiments in grass pollen allergic patients. When used as immunogens in mice and rabbits, the peptides induced protective IgG antibodies, which recognized the complete Phl p 1 wild-type allergen and group 1 allergens from other grass species. Moreover, peptide-induced antibodies inhibited the binding of grass pollen allergic patients IgE antibodies to the wild-type allergen. We thus demonstrate that synthetic hypoallergenic peptides derived from B cell epitopes of major allergens represent safe vaccine candidates for the treatment of IgE- mediated allergies.  相似文献   

12.
Due to the wide distribution and heavy pollen production of grasses, approximately 50% of allergic patients are sensitized against grass pollen allergens. cDNAs coding for two isoforms and four fragments of a major timothy grass (Phleum pratense) pollen allergen, Phl p 6, were isolated by IgE immunoscreening from a pollen expression cDNA library. Recombinant Phl p 6 (rPhl p 6), an acidic protein of 11.8 kDa, was purified to homogeneity as assessed by mass spectrometry and exhibited almost exclusive alpha-helical secondary structure as determined by circular dichroism spectroscopy. Phl p 6 reacted with serum IgE from 75% of grass pollen-allergic patients (n = 171). IgE binding experiments with rPhl p 6 fragments indicated that the N terminus of the allergen is required for IgE recognition. Purified rPhl p 6 elicited dose-dependent basophil histamine release and immediate type skin reactions in patients allergic to grass pollen. A rabbit antiserum raised against purified rPhl p 6 identified it as a pollen-specific protein that, by immunogold electron microscopy, was localized on the polysaccharide-containing wall-precursor bodies (P-particles). The association of Phl p 6 with P-particles may facilitate its intrusion into the deeper airways and thus be responsible for the high prevalence of IgE recognition of Phl p 6. Recombinant native-like Phl p 6 can be used for in vitro as well as in vivo diagnoses of grass pollen allergy, whereas N-terminal deletion mutants with reduced IgE binding capacity may represent candidates for immunotherapy of grass pollen allergy with a low risk of anaphylactic side effects.  相似文献   

13.
Grass pollen allergy is one of the most important allergic diseases world-wide. Several meadow grasses, like timothy grass and rye grass, contribute to allergic sensitizations, but also allergens from extensively cultivated cereals, especially rye, make a profound contribution. The group 4 allergens are well known as important major allergens of grasses. We have cloned for the first time group 4 sequences from Phleum pratense, Lolium perenne, Secale cereale, Triticum aestivum, and Hordeum vulgare, and investigated the IgE-reactivity of recombinant Phl p 4 as a candidate for allergy diagnostic and therapeutic applications.  相似文献   

14.
Almost 90% of grass pollen-allergic patients are sensitized against group 5 grass pollen allergens. We isolated a monoclonal human IgE Fab out of a combinatorial library prepared from lymphocytes of a grass pollen-allergic patient and studied its interaction with group 5 allergens. The IgE Fab cross-reacted with group 5A isoallergens from several grass and corn species. By allergen gene fragmentation we mapped the binding site of the IgE Fab to a 11.2-kDa N-terminal fragment of the major timothy grass pollen allergen Phl p 5A. The IgE Fab-defined Phl p 5A fragment was expressed in Escherichia coli and purified to homogeneity. Circular dichroism analysis revealed that the rPhl p 5A domain, as well as complete rPhl p 5A, assumed a folded conformation consisting predominantly of an alpha helical secondary structure, and exhibited a remarkable refolding capacity. It reacted with serum IgE from 76% of grass pollen-allergic patients and revealed an extremely high allergenic activity in basophil histamine release as well as skin test experiments. Thus, the rPhl p 5A domain represents an important allergen domain containing several IgE epitopes in a configuration optimal for efficient effector cell activation. We suggest the rPhl p 5A fragment and the corresponding IgE Fab as paradigmatic tools to explore the structural requirements for highly efficient effector cell activation and, perhaps later, for the development of generally applicable allergen-specific therapy strategies.  相似文献   

15.
Type I allergy, an immunodisorder that affects almost 20% of the population worldwide, is based on the immunoglobulin E (IgE) recognition of per se innocuous antigens (allergens). Pollen from wind-pollinated plants belong to the most potent allergen sources. We report the isolation of a cDNA coding for a 8.6 kDa two EF-hand calcium binding allergen, Phl p 7, from a timothy grass (Phleum pratense) pollen expression cDNA library, using serum IgE from a grass pollen allergic patient. Sequence analysis identified Phl p 7 as a member of a recently discovered subfamily of pollen-specific calcium binding proteins. Recombinant Phl p 7 was expressed in Escherichia coli and purified to homogeneity as determined by mass spectroscopy. Approximately 10% of pollen allergic patients displayed IgE reactivity to rPhl p 7 and Phl p 7-homologous allergens present in pollens of monocotyledonic and dicotyledonic plants. Circular dichroism analysis of the calcium-bound and apo-rPhl p 7 indicated that differences in IgE recognition may be due to calcium-induced changes in the protein conformation. The fact that patients mount IgE antibodies against different protein conformations is interpreted as a footprint of a preferential sensitization against either form. The biological activity of rPhl p 7 was demonstrated by its ability to induce basophil histamine release and immediate type skin reactions in sensitized individuals. In conclusion, IgE binding to Phl p 7 represents an example for the conformation-dependent IgE recognition of an allergen. Recombinant Phl p 7 may be used for diagnosis and perhaps treatment of a group of patients who suffer from allergy to pollens of many unrelated plant species.  相似文献   

16.
The recombinant major grass pollen allergen Phl p 6 has been expressed with a N-terminal 6 x His-tag sequence and subsequently purified using nickel-chelating Sepharose. After cleavage of the tag-sequence, a second pass over the affinity chromatography revealed that even untagged rPhl p 6 bound tightly. In order to determine if that property is typical for Phl p 6, the natural allergen was purified in the same way starting with a grass pollen extract. Indeed, nPhl p 6 could be highly enriched in one step using nickel-chelating Sepharose. In addition to this new powerful purification method, the results provide further information in that the recombinant and natural allergens share a lot of properties, since biochemical characteristics are reflected in the purification strategies. The preparations of natural and recombinant Phl p 6 were used for comparative electrophoretic, chromatographic and immunological analysis which demonstrated high similarity.  相似文献   

17.
The grass pollen allergen, Phl p 7, belongs to a family of highly cross-reactive calcium-binding pollen allergens. Because Phl p 7 contains most of the disease-eliciting epitopes of pollen-derived calcium-binding allergens, hypoallergenic variants were engineered according to the x-ray crystal structure of Phl p 7 for allergy vaccination. In three recombinant variants, amino acids essential for calcium binding were mutated, and two peptides comprising the N- and C-terminal half were obtained by synthetic peptide chemistry. As determined by circular dichroism analysis and size exclusion chromatography coupled to mass spectrometry, recombinant mutants showed altered structural fold and lacked calcium-binding capacity, whereas the two synthetic peptides had completely lost their structural fold. Allergic patients' IgE Ab binding was strongest reduced to the variant containing two mutations in each of the two calcium-binding sites and to the peptides. Basophil histamine release and skin test experiments in allergic patients identified the peptides as the vaccine candidates with lowest allergenic activity. Immunization of rabbits with the peptides induced IgG Abs that blocked allergic patients' IgE binding to Phl p 7 and inhibited allergen-induced basophil degranulation. Our results indicate that disruption of an allergen's three-dimensional structure represents a general strategy for the generation of hypoallergenic allergy vaccines, and demonstrate the importance of allergen-specific IgG Abs for the inhibition of immediate allergic symptoms.  相似文献   

18.
Almost 500 million people worldwide suffer from Type I allergy, a genetically determined immunodisorder which is based on the production of IgE antibodies against per se harmless antigens (allergens). Due to their worldwide distribution and heavy pollen production, grasses represent a major allergen source for approximately 40% of allergic patients. We purified Phl p 4, a major timothy grass (Phleum pratense) pollen allergen with a molecular mass of 61.3 kDa and a pl of 9.6 to homogeneity. Circular dichroism spectroscopical analysis indicates that Phl p 4 contains a mixed alpha-helical/beta-pleated secondary structure and, unlike many other allergens, showed no reversible unfolding after thermal denaturation. We show that Phl p 4 is a major allergen which reacts with IgE antibodies of 75% of grass pollen allergic patients (n=150) and induces basophil histamine release as well as immediate type skin reactions in sensitized individuals. Phl p 4-specific IgE from three patients as well as two rabbit-anti Phl p 4 antisera cross-reacted with allergens present in pollen of trees, grasses, weeds as well as plant-derived food. Rabbit antibodies raised against Phl p 4 also inhibited the binding of allergic patients IgE to Phl p 4. Phl p 4 may thus be used for diagnosis and treatment of sensitized allergic patients.  相似文献   

19.
20.
Parvalbumins beta (β-PRVBs) are considered the major fish allergens. A new strategy for the rapid and direct detection of these allergens in any foodstuff is presented in this work. The proposed methodology is based on the purification of β-PRVBs by treatment with heat, the use of accelerated in-solution trypsin digestion under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of only nineteen β-PRVB peptide biomarkers by Selected MS/MS Ion Monitoring (SMIM) in a linear ion trap (LIT) mass spectrometer. The present strategy allows the direct detection of the presence of fish β-PRVBs in any food product in less than 2 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号