首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.  相似文献   

2.
BACKGROUND: Despite an apparently active host response, Helicobacter pylori infection can persist for life. Unexpectedly, T cells from apparently uninfected individuals respond to H. pylori antigen by proliferating. Also, the T-cell proliferative response appears to be less in infected compared with uninfected individuals. MATERIALS AND METHODS: We have investigated the T-cell response of isolated human peripheral blood, naive, and memory CD4+ T cells to H. pylori antigen in infected and uninfected subjects. RESULTS: In agreement with previous findings, the peripheral blood proliferative response was higher in uninfected compared with infected subjects. Interestingly, there was a response in CD4+ CD45RO+ (memory) and CD4+CD45RA+ (naive) subsets. The RO/RA ratio of the response to H. pylori antigen was 0.8-2.1 in both H. pylori-positive and H. pylori-negative subjects, which was similar to that of a known superantigen (2.5 and 2.2 in Helicobacter-positive and -negative subjects, respectively) whereas the RO/RA response ratio to a recall antigen (tetanus toxoid) was 9.8 and 18.7 in Helicobacter-positive and -negative subjects, respectively. Mononuclear cells isolated from cord blood also responded to H. pylori antigen, whereas there was no response to tetanus toxoid. The cord blood response and CD4+ CD45RA+ cell response to H. pylori antigen were inhibited predominantly by anti-HLA-DR and to some extent by anti-HLA-DQ antibodies. Investigation of the response to five different recombinant H. pylori antigens identified two that produced a response in naive T cells. CONCLUSIONS: These data suggest that H. pylori possesses molecules that cause higher than expected proliferation of naive T cells.  相似文献   

3.
T lymphocytes expressing the CD8 surface antigen block HIV replication in CD4+ peripheral blood cells from HIV-infected individuals. We report here that CD4+ cells from HIV seronegative donors, when infected in vitro with HIV, also do not replicate virus when cocultured with CD8+ T cells from HIV-infected individuals. CD8+ cells from HIV-uninfected donors did not show this effect on virus replication. HLA-restriction of the antiviral response was not observed, and virus-containing cells were not eliminated from culture. The antiviral activity was broadly cross-reactive, as CD8+ cells from individuals infected only with HIV-1 suppressed the replication of diverse strains of HIV-1 and HIV-2, as well as the simian immunodeficiency virus. This ability of CD8+ cells to control HIV replication could play an important role in the maintenance of an asymptomatic state in HIV-infected individuals.  相似文献   

4.
HIV-specific CD8 T cell responses are defective in chronic HIV infection. In this study, we report that costimulation with either CD137L (4-1BBL) or CD80 (B7.1) enhanced the Ag-specific expansion and acquisition of effector function by HIV-specific memory CD8 T cells. Ag-specific T cells from recently infected donors showed maximal expansion with single costimulatory molecules. Dual costimulation of T cells from recently infected donors or from healthy donors responding to influenza epitopes led to enhanced responses when the accumulation of cytokines was measured. However, accumulation of regulatory cytokines, particularly IFN-gamma, led to inhibition of further Ag-specific CD8 T cell expansion in the cultures. This inhibition was relieved by neutralization of IFN-gamma or of IFN-gamma, TNF, and IL-10. Thus, strong costimulation of T cells in vitro can lead to induction of regulatory cytokines at levels that limit further T cell expansion. In marked contrast, T cells from long-term (>4 years) infected HIV+ donors exhibited reduced Ag-specific CD8 T cell expansion, reduced CD4 T cell responses, and minimal cytokine accumulation. Dual costimulation with both 4-1BBL and B7.1 enhanced responses of T cells from long-term infected subjects to a level similar to that obtained with T cells from early in HIV infection. Experiments with purified CD8 T cells showed that B7.1 and 4-1BBL could act directly and synergistically on CD8 T cells. Taken together, these data suggest that 4-1BBL and B7.1 have additive or synergistic effects on HIV-specific CD8 T cell responses and represent a promising combination for therapeutic vaccination for HIV.  相似文献   

5.
CD4(+) T-cell help is essential for effective immune responses to viruses. In human immunodeficiency virus (HIV) infection, CD4(+) T cells specific for HIV are infected by the virus at higher frequencies than other memory CD4(+) T cells. Here, we demonstrate that HIV-specific CD4(+) T cells are barely detectable in most infected individuals and that the corresponding CD4(+) T cells exhibit an immature phenotype compared to both cytomegalovirus (CMV)-specific CD4(+) T cells and other memory CD4(+) T cells. However, in two individuals, we observed a rare and diametrically opposed pattern in which HIV-specific CD4(+) T-cell populations of large magnitude exhibited a terminally differentiated immunophenotype; these cells were not preferentially infected in vivo. Clonotypic analysis revealed that the HIV-specific CD4(+) T cells from these individuals were cross-reactive with CMV. Thus, preferential infection can be circumvented in the presence of cross-reactive CD4(+) T cells driven to maturity by coinfecting viral antigens, and this physical proximity rather than activation status per se is an important determinant of preferential infection based on antigen specificity. These data demonstrate that preferential infection reduces the life span of HIV-specific CD4(+) T cells in vivo and thereby compromises the generation of effective immune responses to the virus itself; further, this central feature in the pathophysiology of HIV infection can be influenced by the cross-reactivity of responding CD4(+) T cells.  相似文献   

6.
To study the safety and feasibility of T-cell reconstitution in HIV-infected individuals, we adoptively transferred activated autologous CD4+ T cells. Polyclonal peripheral blood CD4+ cells were costimulated ex vivo and subjects were given infusions of up to 3 x 1010 activated CD4+ cells. Dose-dependent increases in CD4+ cell counts and in the CD4:CD8 ratio were observed. Sustained increases in the fraction of cytokine-secreting T cells and decreases in the percentage of CD4+CCR5+ cells were noted in vivo, suggesting enhanced function and resistance to HIV infection. The frequency of CD4+Ki-67+ cells increased whereas CD4+ T cells containing T cell-receptor rearrangement excision circles (TRECs) decreased. These findings indicate that expansion of the peripheral T-cell pool mediated the increase in CD4 counts and suggest that approaches to reconstitute CD4 helper cell activity and decrease CCR5 expression may augment natural immunity to HIV infection.  相似文献   

7.
Unlike HIV-1-infected people, most HIV-2-infected subjects maintain a healthy CD4+ T cell count and a strong HIV-specific CD4+ T cell response. To define the cellular immunological correlates of good prognosis in HIV-2 infection, we conducted a cross-sectional study of HIV Gag-specific T cell function in HIV-1- and HIV-2-infected Gambians. Using cytokine flow cytometry and lymphoproliferation assays, we show that HIV-specific CD4+ T cells from HIV-2-infected individuals maintained proliferative capacity, were not terminally differentiated (CD57-), and more frequently produced IFN-gamma or IL-2 than CD4+ T cells from HIV-1-infected donors. Polyfunctional (IFN-gamma+/IL-2+) HIV-specific CD4+ T cells were found exclusively in HIV-2+ donors. The disparity in CD4+ T cell responses between asymptomatic HIV-1- and HIV-2-infected subjects was not associated with differences in the proliferative capacity of HIV-specific CD8+ T cells. This study demonstrates that HIV-2-infected donors have a well-preserved and functionally heterogeneous HIV-specific memory CD4+ T cell response that is associated with delayed disease progression in the majority of infected people.  相似文献   

8.
The immunology of vertical HIV transmission differs from that of adult infection in that the immune system of the infant is not fully matured, and the factors that influence the functionality of CD8(+) T cell responses against HIV in children remain largely undefined. We have investigated CD8(+) T cell responses in 65 pediatric subjects with vertically acquired HIV-1 infection. Vigorous, broad, and Ag dose-driven CD8(+) T cell responses against HIV Ags were frequently observed in children who were older than 3 years of age and maintained CD4(+) T cell counts >400 cells/ micro l. In contrast, younger age or a CD4(+) T cell count <400 cells/ micro l was associated with poor CD8(+) T cell responses and high HIV loads. Furthermore, subjects with a severely depleted and phenotypically altered CD4(+) T cell compartment had circulating Gag-specific CD8(+) T cells with impaired IFN-gamma production. When viral load was not suppressed by antiviral treatment, subjects that fell below the putative age and CD4(+) T cell count thresholds had significantly reduced CD8(+) T cell responses and significantly higher viral loads. Thus, the data suggest that fully effective HIV-specific CD8(+) T cell responses take years to develop despite an abundance of Ag in early life, and responses are further severely impaired, independent of age, in children who have a depleted or skewed CD4(+) T cell compartment. The results are discussed in relation to differences between the neonatal and adult immune systems in the ability to respond to HIV infection.  相似文献   

9.
Giri PK  Schorey JS 《PloS one》2008,3(6):e2461
Activation of both CD4(+) and CD8(+) T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in na?ve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+) and CD8(+) splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+) and CD8(+) T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.  相似文献   

10.
Infection with Human Immunodeficiency Virus Type 1 (HIV-1) induces defects of both cellular and humoral immune responses. Impaired CD4+ T cell help and B cell dysfunction may partially explain the low frequency of broadly neutralizing antibodies in HIV-infected individuals. To understand the extent of B cell dysfunction during HIV infection, we assessed the level of B cell activation at baseline and after stimulation with a variety of antigens. Increased levels of viremia were associated with higher baseline expression of the activation marker CD86 on B cells and with decreased ability of B cells to increase expression of CD86 after in vitro stimulation with inactivated HIV-1. In a series of cell isolation experiments B cell responses to antigen were enhanced in the presence of autologous CD4+ T cells. HIV infected individuals had a higher frequency of PD-1 expression on B cells compared to HIV- subjects and PD-1 blockade improved B cell responsiveness to HIV antigen, suggesting that inhibitory molecule expression during HIV-1 infection may contribute to some of the observed B cell defects. Our findings demonstrate that during chronic HIV infection, B cells are activated and lose full capacity to respond to antigen, but suppression of inhibitory pressures as well as a robust CD4+ T cell response may help preserve B cell function.  相似文献   

11.
The susceptibility of monocyte-derived cultured dendritic cells (DCs) to human immunodeficiency virus (HIV) infection and their role in viral transmission in the immune response were studied in detail. We observed that highly purified cultured DCs were infected with the T-tropic Lai strain of HIV type 1 (HIV-1Lai) via the CD4 receptor, and this was followed by formation of the complete provirus as detected by PCR. HIV mRNAs were transcribed at only low levels, and virus production was undectable; however, the addition of the purified protein derivative antigen of tuberculin and of autologous resting T cells to HIV-1Lai-infected DCs but not to HIV-1Lai-infected macrophages led to massive HIV transmission and production. These data suggest that the interaction of infected DCs with T cells during the normal immune response could play an important role in the activation and expansion of HIV.  相似文献   

12.
HIV immunity is likely CD4 T cell dependent. HIV-specific CD4 T cell proliferative responses are reported to correlate inversely with virus load and directly with specific CD8 responses. However, the phenotype and cytokine profile of specific CD4 T cells that correlate with disease is unknown. We compared the number/function of Gag p24-specific CD4 T cells in 17 HIV-infected long-term nonprogressors (LTNPs) infected for a median of 14.6 years with those of 16 slow progressors (SPs), also HIV infected for a median of 14 years but whose CD4 count had declined to <500 cells/ micro l. Compared with SPs, LTNPs had higher numbers of specific CD4s that were double positive for IFN-gamma and IL-2 as well as CD28 and IL-2. However, CD4 T cells that produced IL-2 alone (IL-2(+)IFN-gamma(-)) or IFN-gamma alone (IFN-gamma(+)IL-2(-)) did not differ between LTNPs and SPs. The decrease in p24-specific CD28(+)IL-2(+) cells with a concomitant increase of p24-specific CD28(-)IL-2(+) cells occurred before those specific for a non-HIV Ag, CMV. p24-specific CD28(-)IL-2(+) cells were evident in LTNPs and SPs, whereas the CMV-specific CD28(-)IL-2(+) response was confined to SPs. The difference between LTNPs and SPs in the Gag p24 IFN-gamma(+)IL-2(+) response was maintained when responses to total Gag (p17 plus p24) were measured. The percentage and absolute number of Gag-specific IFN-gamma(+)IL-2(+) but not of IFN-gamma(+)IL-2(-) CD4s correlated inversely with virus load. The Gag-specific IFN-gamma(+)IL-2(+) CD4 response also correlated positively with the percentage of Gag-specific IFN-gamma(+) CD8 T cells in these subjects. Accumulation of specific CD28(-)IL-2(+) helpers and loss of IFN-gamma(+)IL-2(+) CD4 T cells may compromise specific CD8 responses and, in turn, immunity to HIV.  相似文献   

13.
In order to characterize the cellular composition of cerebrospinal fluid (CSF) in a healthy state and in the setting of chronic pleocytosis associated with HIV-1 (HIV) infection, multi-parameter flow cytometry was used to identify and quantitate cellular phenotypes in CSF derived from HIV-uninfected healthy controls and HIV-infected subjects across a spectrum of disease and treatment. CD4+ T cells were the most frequent CSF population and the CD4:CD8 ratio was significantly increased in the CSF compared to blood (p = 0.0232), suggesting preferential trafficking of CD4+ over CD8+ T cells to this compartment. In contrast, in HIV-infection, CD8+ T cells were the major cellular component of the CSF and were markedly increased compared to HIV-uninfected subjects (p<0.001). As with peripheral blood, the CSF CD4:CD8 ratio was reversed in HIV-infected subjects compared to HIV-uninfected subjects. Monocytes, B cells and NK cells were rare in the CSF in both groups, although absolute counts of CSF NK cells and B cells were significantly increased in HIV-infected subjects (p<0.05). Our studies show that T cells are the major cellular component of the CSF in HIV-infected and uninfected subjects. The CSF pleocytosis characteristic of HIV infection involves all lymphocyte subsets we measured, except for CD4+ T cells, but is comprised primarily of CD8+ T cells. The reduced proportion of CD4+ T cells in the CSF may reflect both HIV-related peripheral loss and changes in trafficking patterns in response to HIV infection in the central nervous system.  相似文献   

14.
Mycobacterium tuberculosis bacilli readily activate CD4(+) and gammadelta T cells. CD4(+) and gammadelta T cells were compared for their ability to regulate IFN-gamma, TNF-alpha, and IL-10 production, cytokines with significant roles in the immune response to M. tuberculosis. PBMC from healthy tuberculin positive donors were stimulated with live M. tuberculosis-H37Ra. CD4(+) and gammadelta T cells were purified by negative selection and tested in response to autologous monocytes infected with M. tuberculosis. Both subsets produced equal amounts of secreted IFN-gamma. However, the precursor frequency of IFN-gamma secreting gammadelta T cells was half that of CD4(+) T cells, indicating that gammadelta T cells were more efficient producers of IFN-gamma than CD4(+) T cells. TNF-alpha production was markedly enhanced by addition of CD4(+) and gammadelta T cells to M. tuberculosis infected monocytes, and TNF-alpha was produced by both T cells and monocytes. No differences in TNF-alpha enhancement were noted between CD4(+) and gammadelta T cells. IL-10 production by M. tuberculosis infected monocytes was not modulated by CD4(+) or gammadelta T cells. Thus CD4(+) and gammadelta T cells had similar roles in differential regulation of IFN-gamma, TNF-alpha, and IL-10 secretion in response to M. tuberculosis infected monocytes. However, the interaction between T cells and infected monocytes differed for each cytokine. IFN-gamma production was dependent on antigen presentation and costimulators provided by monocytes. TNF-alpha levels were increased by addition of TNF-alpha produced by T cells and IL-10 production by monocytes was not modulated by CD4(+) or gammadelta T cells.  相似文献   

15.
Progression of human immunodeficiency virus (HIV) disease is associated with massive death of CD4(+) T cells along with death and/or dysfunction of CD8(+) T cells. In vivo, both HIV infection per se and host factors may contribute to the death and/or dysfunction of CD4(+) and CD8(+) T cells. Progression of HIV disease is often characterized by a switch from R5 to X4 HIV type 1 (HIV-1) variants. In human lymphoid tissues ex vivo, it was shown that HIV infection is sufficient for CD4(+) T-cell depletion. Here we address the question of whether infection of human lymphoid tissue ex vivo with prototypic R5 or X4 HIV variants also depletes or impairs CD8(+) T cells. We report that whereas productive infection of lymphoid tissue ex vivo with R5 and X4 HIV-1 isolates induced apoptosis in CD4(+) T cells, neither viral isolate induced apoptosis in CD8(+) T cells. Moreover, in both infected and control tissues we found similar numbers of CD8(+) T cells and similar production of cytokines by these cells in response to phorbol myristate acetate or anti-CD3-anti-CD28 stimulation. Thus, whereas HIV-1 infection per se in human lymphoid tissue is sufficient to trigger apoptosis in CD4(+) T cells, the death of CD8(+) T cells apparently requires additional factors.  相似文献   

16.
GBV-C infection is associated with prolonged survival and with reduced T cell activation in HIV-infected subjects not receiving combination antiretroviral therapy (cART). The relationship between GBV-C and T cell activation in HIV-infected subjects was examined. HIV-infected subjects on cART with non-detectable HIV viral load (VL) or cART naïve subjects were studied. GBV-C VL and HIV VL were determined. Cell surface markers of activation (CD38+/HLA-DR+), proliferation (Ki-67+), and HIV entry co-receptor expression (CCR5+ and CXCR4+) on total CD4+ and CD8+ T cells, and on naïve, central memory (CM), effector memory (EM), and effector CD4+ and CD8+ subpopulations were measured by flow cytometry. In subjects with suppressed HIV VL, GBV-C was consistently associated with reduced activation in naïve, CM, EM, and effector CD4+ cells. GBV-C was associated with reduced CD4+ and CD8+ T cell surface expression of activation and proliferation markers, independent of HIV VL classification. GBV-C was also associated with higher proportions of naïve CD4+ and CD8+ T cells, and with lower proportions of EM CD4+ and CD8+ T cells. In conclusion, GBV-C infection was associated with reduced activation of CD4+ and CD8+ T cells in both HIV viremic and HIV RNA suppressed patients. Those with GBV-C infection demonstrated an increased proportion of naive T cells and a reduction in T cell activation and proliferation independent of HIV VL classification, including those with suppressed HIV VL on cART. Since HIV pathogenesis is thought to be accelerated by T cell activation, these results may contribute to prolonged survival among HIV infected individuals co-infected with GBV-C. Furthermore, since cART therapy does not reduce T cell activation to levels seen in HIV-uninfected people, GBV-C infection may be beneficial for HIV-related diseases in those effectively treated with anti-HIV therapy.  相似文献   

17.
Highly active antiretroviral therapy (HAART) suppresses human immunodeficiency virus (HIV) replication to undetectable levels but cannot fully eradicate the virus because a small reservoir of CD4+ T cells remains latently infected. Since HIV efficiently infects only activated CD4+ T cells and since latent HIV primarily resides in resting CD4+ T cells, it is generally assumed that latency is established when a productively infected cell recycles to a resting state, trapping the virus in a latent state. In this study, we use a dual reporter virus—HIV Duo-Fluo I, which identifies latently infected cells immediately after infection—to investigate how T cell activation affects the estab-lishment of HIV latency. We show that HIV latency can arise from the direct infection of both resting and activated CD4+ T cells. Importantly, returning productively infected cells to a resting state is not associated with a significant silencing of the integrated HIV. We further show that resting CD4+ T cells from human lymphoid tissue (tonsil, spleen) show increased latency after infection when compared to peripheral blood. Our findings raise significant questions regarding the most commonly accepted model for the establishment of latent HIV and suggest that infection of both resting and activated primary CD4+ T cells produce latency.  相似文献   

18.
Production of the human immunodeficiency virus (HIV) by cultured peripheral blood mononuclear cells (PMC) from many seropositive individuals is inhibited by the presence of CD8+ T lymphocytes. In a study of 10 subjects, high levels of virus replication could be detected in cultures of purified CD4+ cells, but not in unseparated PMC. Addition of highly purified, autologous CD8+ cells to the enriched CD4+ cells resulted in a dose-dependent inhibition of HIV growth and revealed that for some individuals, even low numbers of CD8+ cells can prevent replication of the virus. The data also indicated that culturing enriched CD4+ cells could greatly enhance detection of infectious virus in blood specimens and demonstrated that the CD4+ molecule is expressed on infected T cells isolated directly from the peripheral blood.  相似文献   

19.
20.
T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice   总被引:1,自引:0,他引:1  
Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号