首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A) are stored in large amounts in human platelets. After activation of the platelets both dinucleotides are released into the extracellular milieu where they play a role in the modulation of platelet aggregation and also in the regulation of the vasotone. It has recently been shown that the dinucleotides are degraded by enzymes present in the plasma [Lüthje, J. & Ogilvie, A. (1987) Eur. J. Biochem. 169, 385-388]. The further metabolism as well as the role of blood cells has not been established. The dinucleotides were first degraded by plasma phosphodiesterases yielding ATP (ADP) plus AMP as products which were then metabolized to adenosine and inosine. The nucleosides did not accumulate but were very rapidly salvaged by erythrocytes yielding intracellular ATP as the main product. Although lysates of platelets, leucocytes and red blood cells contained large amounts of Ap3A-degrading and Ap4A-degrading activities, these activities were not detectable in suspensions of intact cells suggesting the lack of dinucleotide-hydrolyzing ectoenzymes. Compared to ATP, which is rapidly degraded by ectoenzymes present on blood cells, the half-life of Ap4A was two to three times longer. Since the dinucleotides are secreted together with ADP and ATP from the platelets, we tested the influence of ATP on the rate of degradation of Ap4A. ATP at concentrations present during platelet aggregation strongly inhibited the degradation of Ap4A in whole blood. It is suggested that in vivo the dinucleotides are protected from degradation immediately after their release. They may thus survive for rather long times and may act as signals even at sites far away from the platelet aggregate.  相似文献   

2.
The biologically active dinucleotides adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')-triphospho(5')adenosine (Ap3A), which are both releasable into the circulation from storage pools in thrombocytes, are catabolized by intact bovine aortic endothelial cells. 1. Compared with extracellular ATP and ADP, which are very rapidly hydrolysed, the degradation of Ap4A and Ap3A by endothelial ectohydrolases is relatively slow, resulting in a much longer half-life on the endothelial surface of the blood vessel. The products of hydrolysis are further degraded and finally taken up as adenosine. 2. Ap4A hydrolase has high affinity for its substrate (Km 10 microM). 3. ATP as well as AMP transiently accumulates in the extracellular fluid, suggesting an asymmetric split of Ap4A by the ectoenzyme. 4. Mg2+ or Mn2+ at millimolar concentration are needed for maximal activity; Zn2+ and Ca2+ are inhibitory. 5. The hydrolysis of Ap4A is retarded by other nucleotides, such as ATP and Ap3A, which are released from platelets simultaneously with Ap4A.  相似文献   

3.
Diadenosine 5',5'-P1,P2-diphosphate (Ap2A) is one of the adenylic dinucleotides stored in platelet granules. Along with proaggregant ADP, it is released upon platelet activation and is known to stimulate myocyte proliferation. We have previously demonstrated synthesis of Ap2A and of two isomers thereof, called P18 and P24, from their high pressure liquid chromatography retention time, by the ADP-ribosyl cyclase CD38 in mammalian cells. Here we show that Ap2A and its isomers are present in resting human platelets and are released during thrombin-induced platelet activation. The three adenylic dinucleotides were identified by high pressure liquid chromatography through a comparison with the retention times and the absorption spectra of purified standards. Ap2A, P18, and P24 had no direct effect on platelet aggregation, but they inhibited platelet aggregation induced by physiological agonists (thrombin, ADP, and collagen), with mean IC(50) values ranging between 5 and 15 mum. Moreover, the three dinucleotides did not modify the intracellular calcium concentration in resting platelets, whereas they significantly reduced the thrombin-induced intracellular calcium increase. Through binding to the purinergic receptor P2Y(11), exogenously applied Ap2A, P18, and P24 increased the intracellular cAMP concentration and stimulated platelet production of nitric oxide, the most important endogenous antiaggregant. The presence of Ap2A, P18, and P24 in resting platelets and their release during thrombin-induced platelet activation at concentrations equal to or higher than the respective IC(50) value on platelet aggregation suggest a role of these dinucleotides as endogenous negative modulators of aggregation.  相似文献   

4.
Summary The extracellular presence of adenosine polyphosphatase was investigated in a number of rat tissues. The enzyme was demonstrated in basement membranes of epithelial cells of duodenum, urinary bladder, tongue, choroid plexus, submandibular salivary gland, lung and kidney, as well as in basement membranes of capillaries in these tissues. Furthermore adenosine polyphosphatase was demonstrated on collagen fibrils and in the cytoplasm of fibroblasts of all investigated tissues. It appears that the presence of adenosine polyphosphatase in basement membranes is a widespread phenomenon. Since extracellular ADP and ATP are known to promote respectively platelet aggregation and inflammation, the presence of extracellular ADP and ATP-hydrolyzing activity might contribute to inhibit these processes.  相似文献   

5.
Supernates of thymic epithelial cell culture (STEC) strongly inhibit aggregation induced by addition of adenosine diphosphate (ADP: 1 microM) or thrombin (0.5 unit per ml) to washed platelet suspensions and accelerated the restoration from ADP-triggered aggregation. At the same time, STEC increased the level of platelet adenosine 3',5'-cyclic monophosphate (cyclic AMP) in a dose-dependent manner. Depending on the concentration used, thymosin fraction 5 increased the level of intracellular cyclic AMP ranging between 5 and 100 micrograms per ml, as well as inhibiting ADP-induced platelet aggregation. The activities of both STEC and thymosin fraction 5 were found to act exclusively on cyclic AMP phosphodiesterase activity in platelets. In contrast the supernates from Chang, HeLa, or HCC-M cells did not affect platelet aggregation induced by ADP, but slightly increased the cyclic AMP level (Chang, HeLa). Within 2 min after the treatment with STEC, more than 50% of the maximum inhibitory activity on platelet aggregation and increases in intracellular cyclic AMP were observed. These activities disappeared following STEC treatment with pronase E. STEC activity was found predominantly in the 1,000-50,000-dalton fractions. These activities were not altered when STEC was treated by adenosine deaminase. The level of prostaglandin E (PGE) derivatives in STEC was about two times that found in the control culture medium. These data suggest that the biological activity of STEC in the platelets might be attributed to thymosinlike polypeptides and PGE1.  相似文献   

6.
The extracellular presence of adenosine polyphosphatase was investigated in a number of rat tissues. The enzyme was demonstrated in basement membranes of epithelial cells of duodenum, urinary bladder, tongue, choroid plexus, submandibular salivary gland, lung and kidney, as well as in basement membranes of capillaries in these tissues. Furthermore adenosine polyphosphatase was demonstrated on collagen fibrils and in the cytoplasm of fibroblasts of all investigated tissues. It appears that the presence of adenosine polyphosphatase in basement membranes is a widespread phenomenon. Since extracellular ADP and ATP are known to promote respectively platelet aggregation and inflammation, the presence of extracellular ADP and ATP-hydrolyzing activity might contribute to inhibit these processes.  相似文献   

7.
J Lüthje 《Blut》1989,59(4):367-374
Previously, the role of adenine nucleotides was thought to be confined to the intracellular space of the cell. Research of the last decades has revealed that nucleotides also occur in the extracellular milieu. This survey deals with extracellular adenine compounds in the blood, focussing on their role as chemical mediators in the haemostatic effect of red cells. Erythrocytes may act as pro-aggregatory cells by at least two chemical mechanisms. Firstly, they can enhance platelet aggregation by releasing adenosine diphosphate (ADP), a well known platelet stimulatory substance. ADP is set free when red cells are stressed mechanically, for instance by shear forces generated in the blood stream; ample experimental evidence supporting this view is summarized. Secondly, erythrocytes efficiently take up extracellular adenosine via their nucleoside transporters, thereby removing a potent inhibitor of platelet function. Extracellular adenosine occurs in the blood stream, either directly released from various tissues or as the end product of extracellular adenine nucleotide metabolism, e.g. after degradation of red cell-born ADP or ATP. Finally, a novel mechanism of action of the antithrombotic drug dipyridamole, which has very recently been put forward, is demonstrated. Dipyridamole inhibits platelet function indirectly by blocking the uptake of extracellular adenosine via the nucleoside transporter of red cells; increased adenosine levels in turn are responsible for the antiaggregatory effect of dipyridamole.  相似文献   

8.
Ca2+, Mg2+-ionophores X537A and A23,187 (10(-7)-10(-6) M) induced the release of adenine nucleotides adenosine diphosphate (ADP, adenosine triphosphate (ATP), serotonin, beta-glucuronidase, Ca2+, and Mg2+ from washed human platelets. Enzymes present in the cytoplasm or mitochondria, and Zn2+ were not released. The rate of ATP and Ca2+ release measured by firefly lantern extract and murexide dye, respectively, was equivalent to that produced by the physiological stimulant thrombin. Ionophore-induced release of ADP, and serotonin was substantially (approximately 60%) but not completely inhibited by EGTA, EDTA, and high extracellular Mg2+, without significant reduction of Ca2+ release. The ionophore-induced release reaction is therefore partly dependent upon uptake of extracellular Ca2+ (demonstrated using 45Ca), but also occurs to a significant extent due to release into the cytoplasm of intracellular Ca2+. The ionophore-induced release reaction and aggregation of platelets could be blocked by prostaglandin E1 (PGE1) or dibutyryl cyclic AMP. The effects of PGE1, and N6, O2-dibutyryl adenosine 3':5'-cyclic monophosphoric acid (dibutyryl cAMP) were synergistically potentiated by the phosphodiesterase inhibitor theophylline. It is proposed that Ca2+ is the physiological trigger for platelet secretion and aggregation and that its intracellular effects are strongly modulated by adenosine 3':5'-cyclic monophosphoric acid (cyclic AMP).  相似文献   

9.
J Lüthje  J Baringer  A Ogilvie 《Blut》1985,51(6):405-413
The effects on platelet aggregation of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A), both of which are stored in and released from platelet granules, have been studied in unfractionated human blood using a microscopic platelet-count ratio method. Ap3A at submicromolar concentrations induces platelet aggregation whereas the homologue dinucleotide Ap4A has disaggregating potency. In the concentration range between 10(-7) to 10(-5) M, Ap3A has been found to be as effective as ADP in triggering aggregate formation. These results confirm and essentially extend our recent findings with platelet-rich plasma that Ap3A is able to trigger platelet aggregation by a slow release of ADP from Ap3A which is catalyzed by a plasma hydrolase. Formation of platelet aggregates was also followed kinetically using a turbidometric method which has been developed for this purpose. In contrast to ADP which very rapidly induces a transient state of aggregation, the effect of Ap3A occurs much more slowly but induces the same maximum of aggregation. The duration of the Ap3A stimulus, however, is longer than that of ADP pointing to a potential physiological function of Ap3A as a "masked" source for ADP.  相似文献   

10.
DNA ligase from the hyperthermophilic marine archaeon Pyrococcus furiosus (Pfu DNA ligase) synthesizes adenosine 5'-tetraphosphate (p4A) and dinucleoside polyphosphates by displacement of the adenosine 5'-monophosphate (AMP) from the Pfu DNA ligase-AMP (E-AMP) complex with tripolyphosphate (P3), nucleoside triphosphates (NTP), or nucleoside diphosphates (NDP). The experiments were performed in the presence of 1-2 microM [alpha-32P]ATP and millimolar concentrations of NTP or NDP. Relative rates of synthesis (%) of the following adenosine(5')tetraphospho(5')nucleosides (Ap4N) were observed: Ap4guanosine (Ap4G) (from GTP, 100); Ap4deoxythymidine (Ap4dT) (from dTTP, 95); Ap4xanthosine (Ap4X) (from XTP, 94); Ap4deoxycytidine (Ap4dC) (from dCTP, 64); Ap4cytidine (Ap4C) (from CTP, 60); Ap4deoxyguanosine (Ap4dG) (from dGTP, 58); Ap4uridine (Ap4U) (from UTP, <3). The relative rate of synthesis (%) of adenosine(5')triphospho(5')nucleosides (Ap3N) were: Ap3guanosine (Ap3G) (from GDP, 100); Ap3xanthosine (Ap3X) (from XDP, 110); Ap3cytidine (Ap3C) (from CDP, 42); Ap3adenosine (Ap3A) (from ADP, <1). In general, the rate of synthesis of Ap4N was double that of the corresponding Ap3N. The enzyme presented optimum activity at a pH value of 7.2-7.5, in the presence of 4 mM Mg2+, and at 70 degrees C. The apparent Km values for ATP and GTP in the synthesis of Ap4G were about 0.001 and 0.4mM, respectively, lower values than those described for other DNA or RNA ligases. Pfu DNA ligase is used in the ligase chain reaction (LCR) and some of the reactions here reported [in particular the synthesis of Ap4adenosine (Ap4A)] could take place during the course of that reaction.  相似文献   

11.
The equilibrium binding of 14C-labeled ADP to intact washed human blood platelets and to platelet membranes was investigated. With both intact platelets and platelet membranes a similar concentration dependence curve was found. It consisted of a curvilinear part below 20 microM and a rectilinear part above this concentration. At high ADP concentrations, the rectilinear part appeared to be saturable. Because of this, two classes of saturable ADP binding sites were proposed. ADP was partly converted to ATP and AMP with intact platelets while this conversion was virtually absent in isolated platelet membranes. ADP was bound to platelet membranes with the same type of curves found for intact platelets. The ADP binding to the high affinity system, which was stimulated by calcium ions, was nearly independent of temperature and had a pH optimum at 7.8. A number of agents were investigated for inhibiting properties. Of the sulfhydryl reagents only p-chloromercuribenzene sulfonate inhibited both high and low affinity binding systems while iodoacetamide and N-ethylmaleimide were without effect. Compounds acting via cyclic AMP on platelet aggregation, such as adenosine and cyclic AMP itself, had no influence on binding. Some nucleosidediphosphates and nucleotide analogs at a concentration of 100 microM had no, or only a slight, effect on high affinity ADP binding. For some other nucleotides inhibitor constants were determined for both platelet ADP aggregation and ADP binding. The inhibitor constants of ATP, adenyl-5'-yl-(beta,gamma-methylene)diphosphate, IDP, adenosine-5'(2-O-thio)diphosphate, for aggregation and high affinity binding were in good correlation with each other. Exceptions formed fluorosulfonylbenzoyl adenosine and AMP. The ATP formation found with intact platelets could be attributed to a nucleosidediphosphate kinase. It was investigated in some detail. The enzyme was magnesium dependent, had a Q10 value of 1.41, a pH optimum at 8.0, was competitively inhibited by AMP and reacted via a ping pong mechanism. All findings described in this paper indicate that platelets as well as platelet membranes bind ADP with the same characteristics and they suggest that the high affinity binding of ADP is involved in platelet aggregation induced by ADP. The results on nucleosidediphosphate kinase did not permit a firm conclusion about the role of the enzyme in induction of platelet aggregation by ADP.  相似文献   

12.
Whereas adenosine itself exerted independent stimulatory and inhibitory effects on the adenylate cyclase activity of a platelet particulate fraction at low and high concentrations respectively, 2-substituted and N6-monosubstituted adenosines had stimulatory but greatly decreased inhibitory effects. Deoxyadenosines, on the other hand, had enhanced inhibitory but no stimulatory effects. The most potent inhibitors found were, in order of increasing activity, 9-(tetrahydro-2-furyl)adenine (SQ 22536), 2',5'-dideoxyadenosine and 2'-deoxyadenosine 3'-monophosphate. Kinetic studies on prostaglandin E1-activated adenylate cyclase showed that the inhibition caused by either 2',5'-dideoxyadenosine or compound SQ 22536 was non-competitive with MgATP and that the former compound, at least, showed negative co-operativity; 50% inhibition was observed with 4 micron-2',5'-dideoxyadenosine or 13 micron-SQ 22536. These two compounds also inhibited both the basal and prostaglandin E1-activated adenylate cyclase activities of intact platelets, when these were measured as the increases in cyclic [3H]AMP in platelets that had been labelled with [3H]adenine and were then incubated briefly with papaverine or papaverine and prostaglandin E1. Both compounds, but particularly 2',5'-dideoxyadenosine, markedly decreased the inhibition by prostaglandin E1 of platelet aggregation induced by ADP or [arginine]vasopressin as well as the associated increases in platelet cyclic AMP, so providing further evidence that the effects of prostaglandin E1 on platelet aggregation are mediated by cyclic AMP. 2'-Deoxyadenosine 3'-monophosphate did not affect the inhibition of aggregation by prostaglandin E1, suggesting that the site of action of deoxyadenosine derivatives on adenylate cyclase is intracellular. Neither 2',5'-dideoxyadenosine nor compound SQ 22536 alone induced platelet aggregation. Moreover, neither compound potentiated platelet aggregation or the platelet release reaction when suboptimal concentrations of ADP, [arginine]vasopressin, collagen or arachidonate were added to heparinized or citrated platelet-rich plasma in the absence of prostaglandin E1. These results show that cyclic AMP plays no significant role in the responses of platelets to aggregating agents in the absence of compounds that increase the platelet cyclic AMP concentration above the resting value.  相似文献   

13.
Adenylate kinase activity in ejaculated bovine sperm flagella   总被引:3,自引:0,他引:3  
Adenylate kinase (ATP:AMP phosphotransferase, EC 2.7.4.3) activity was detected in the flagella of ejaculated bovine spermatozoa. This activity provided sufficient ATP to produce normal motility in cells permeabilized with digitonin and treated with 0.5 mM MgADP. In the presence of ADP, adenylate kinase activity was inhibited by P1,P5-di(adenosine 5')-pentaphosphate (Ap5A), an adenylate kinase-specific inhibitor, and motility was stopped. ATP-supported motility was not affected by Ap5A. Mitochondrial adenylate kinase activity allowed AMP to stimulate respiration in permeabilized sperm. Adenylate kinase activity in tail fragments was most active in a pH range from 7.6 to 8.4, and a similar pH sensitivity was observed for this enzyme activity in a hypotonic extract of whole sperm. The apparent km of adenylate kinase activity in permeabilized tail fragments was about 1.0 mM ADP in the direction of ATP synthesis. The fluctuation of nucleotide concentrations in normal and metabolically stimulated sperm suggested that adenylate kinase was most active when the cell was highly motile, although adenylate kinase activity did not appear to be coupled strictly with motility.  相似文献   

14.
Cyclic adenosine 3':5'-monophosphate added to the starvation media of Dictyostelium discoideum amoebae induces both intracellular and extracellular phosphodiesterase activities of these cells. The induced enzyme activity appears several hours earlier than that in starved cells which have not been induced with cyclic nucleotide. In both cases, the appearance of enzyme is inhibited by cycloheximide, and actinomycin D, and daunomycin. The KmS for the extracellular enzyme(s) of nucleotide-induced and uninduced control cells are identical. The induction of enzyme activity seems specific for cyclic adenosine 3':5'-monophosphate since cyclic guanosine 3':5'-monophosphate, as well as other nucleotides, have no effect. No differences in the activity or excretion of either N-acetylglucosaminidase or the inhibitory of the extracellular phosphodiesterase are observed between cyclic adenosine 3':5'-monophosphate-induced and control cells. A direct activation of phosphodiesterase by cyclic adenosine 3':5'-monophosphate can be excluded, since the addition of this nucleotide to cell lysates has no effect on the enzyme activity.  相似文献   

15.
Inhibitory effects of various purinergic compounds on the Mg(2+)-dependent enzymatic hydrolysis of [(3)H]ATP in rat liver plasma membranes were evaluated. Rat liver enzyme ecto-ATPase has a broad nucleotide-hydrolyzing activity, displays Michaelis-Menten kinetics with K(m) for ATP of 368+/-56 microM and is not sensitive to classical inhibitors of the ion-exchange and intracellular ATPases. P2-antagonists and diadenosine tetraphosphate (Ap(4)A) progressively and non-competitively inhibited ecto-ATPase activity with the following rank order of inhibitory potency: suramin (pIC(50), 4.570)>Reactive blue 2 (4.297)&z.Gt;Ap(4)A (3. 268)>pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (2. 930). Slowly hydrolyzable P2 agonists ATPgammaS, ADPbetaS, alpha, beta-methylene ATP and beta,gamma-methylene ATP as well as the diadenosine polyphosphates Ap(3)A and Ap(5)A did not exert any inhibitory effects on the enzyme activity at concentration ranges of 10(-4)-10(-3) M. Thin-layer chromatography analysis of the formation of [(3)H]ATP metabolites indicated the presence of other enzyme activities on liver surface (ecto-ADPase and 5'-nucleotidase), participating in concert with ecto-ATPase in the nucleotide hydrolysis through the stepwise reactions ATP-->ADP-->AMP-->adenosine. A similar pattern of sequential [(3)H]ATP dephosphorylation still occurs in the presence of ecto-ATPase inhibitors suramin, Ap(4)A and PPADS, but the appearance of the ultimate reaction product, adenosine, was significantly delayed. In contrast, hydrolysis of [(3)H]ATP in the presence of Reactive blue 2 only followed the pattern ATP-->ADP, with formation of the subsequent metabolites AMP and adenosine being virtually eliminated. These data suggest that although nucleotide-binding sites of ecto-ATPase are distinct from those of P2 receptors, some purinergic agonists and antagonists can potentiate cellular responses to extracellular ATP through non-specific inhibition of the ensuing pathways of purine catabolism.  相似文献   

16.
The inhibitory effect of adenosine on aggregation of human platelets activated by platelet activating factor (PAF), ADP and serotonin (5-HT) were examined using native platelets from blood of volunteers. Platelet aggregation was determined by Born's method. Effective adenosine concentrations (IC50) which had inhibited platelet aggregation were found to be 0.63 +/- 0.11, 1.47 +/- 0.31 and 0.64 +/- 0.18 microM, respectively. It was shown that 10 microM adenosine inhibited PAF-induced platelet aggregation completely. The same adenosine concentration blocked ADP- and 5-HT-induced aggregation only partially. Adenosine is physiological inhibitor of human platelet aggregation in administration of PAF, ADP and 5-HT. Specific characteristics of adenosine modulating effect on these ligands was elicited.  相似文献   

17.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Because adenosine plays a role in the regulation of glomerular filtration rate and of the release of renin, we examined the possibility of a local source for this mediator. We found that rat cultured glomerular mesangial cells converted 5'-AMP into adenosine. The properties of the enzyme involved in the reaction were those of an ecto-5' nucleotidase: (1) the products of the reaction were generated in the extracellular fluid although no 5'-nucleotidase was released by the cells into the medium; (2) identical activities were found for cultured cells in situ and sonicated cells; (3) the diazonium salt of sulfanilic acid which is a nonpenetrating reagent inhibited up to 75% of the enzyme activity. Ecto-5'-nucleotidase activity of intact cells obeyed Michaelis-Menten kinetics. Apparent Km for 5'-AMP was 0.32 mM. 5'-UMP was a strictly competitive inhibitor. ADP exerted a very powerful inhibitory effect and behaved also as a competitive inhibitor. ATP was inhibitory both by increasing Km and by decreasing Vmax. Ecto-5'-nucleotidase was active in the absence of divalent cations. However, Mg2+, Ca2+, Co2+ and Mn2+ were stimulatory. Zn2+ and Cu2+ suppressed the activity. Concanavalin A, a plant lectin, was markedly inhibitory, suggesting that a glycoprotein moiety was necessary to express enzyme activity. Ecto-5'-nucleotidase activity was not modified during phagocytosis of serum-treated zymosan by mesangial cells. Rat cultured glomerular epithelial cells exhibited a 5'-nucleotidase activity which was 4 times lower than that of the mesangial cells in primary culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. The involvement of intracellular 3':5'-cyclic AMP in the inhibition of platelet aggregation by prostaglandin E(1), isoprenaline and adenosine has been examined by a radiochemical technique. Platelet-rich plasma was incubated with radioactive adenine to incorporate (14)C radioactivity into platelet nucleotides. Pairs of identically treated samples were taken, one for the photometric measurement of platelet aggregation induced by ADP, the other for estimation of the radioactivity of 3':5'-cyclic AMP. 2. Theophylline, papaverine, dipyridamole and 2,6-bis-(diethanolamino)-4-piperidinopyrimido[5,4d]pyrimidine (compound RA233) were found to inhibit 3':5'-cyclic AMP phosphodiesterase from platelets. At concentrations of 3':5'-cyclic AMP greater than 50mum the most active inhibitor was dipyridamole; at 3':5'-cyclic AMP concentrations less than 19mum, papaverine and compound RA233 were more active than dipyridamole. 3. In the presence of compound RA233 (50mum), the effectiveness of prostaglandin E(1) as an inhibitor of platelet aggregation was increased tenfold. Compound RA233 also increased the stimulation by prostaglandin E(1) of the incorporation of radioactivity into 3':5'-cyclic AMP. 4. Compound RA233 (50mum) increased the effectiveness of both adenosine and 2-chloroadenosine as inhibitors of aggregation by 70-100-fold, and in the presence of compound RA233 both adenosine and 2-chloroadenosine stimulated the incorporation of radioactivity into 3':5'-cyclic AMP; the extent of the stimulation was proportional to the logarithm of the nucleoside concentration. 5. Compound RA233 (100-500mum) inhibited platelet aggregation by itself and caused small increases in the radioactivity of 3':5'-cyclic AMP. Partial positive correlations were found between the radioactivity of 3':5'-cyclic AMP in platelets measured at the time of addition of the aggregating agent (ADP) and the extent to which the aggregation was inhibited. 6. The results are interpreted as indicating that adenosine, 2-chloroadenosine, isoprenaline, prostaglandin E(1) and drugs that inhibit platelet 3':5'-cyclic AMP phosphodiesterase all inhibit aggregation by a common mechanism involving intracellular 3':5'-cyclic AMP.  相似文献   

20.
Simanshu DK  Savithri HS  Murthy MR 《Proteins》2008,70(4):1379-1388
Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATP. Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap4A bound to the active site pocket suggesting the presence of Ap4A synthetic activity in TdcD. Binding of Ap4A to the enzyme was confirmed by the structure determination of a TdcD-Ap4A complex obtained after cocrystallization of TdcD with commercially available Ap4A. Mass spectroscopic studies provided further evidence for the formation of Ap4A by propionate kinase in the presence of ATP. In the TdcD-Ap4A complex structure, Ap4A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号