首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Methyl-d-glucoside has been shown to be a non-metabolizable sugar which is accumulated against a concentration gradient by a Na+-dependent and phlorizin inhibited process by adult rat renal cortical slices incubatedin vitro at 37 °C. (2) The velocity of accumulation increased linearly with substrate concentrations up to 1.5 mM, but at higher concentrations obeyed saturable kinetics with an apparentKm of about 6 mM. (3) Uptake was enhanced as Na+ was increased from 0 to 100 mequiv/l. Higher Na+ concentrations caused no further effect. (4) A pH maximum of transport occurred between 7.35 and 8.0. (5) Glucoside uptake was inhibited byd-glucose,d-galactose,d-fructose,d-mannose andd-ribose. The inhibition byd-glucose andd-galactose was competitive with apparentKt of 24 and 53 mM, respectively. (6) Bothd-glucose andd-galactose accelerated the efflux of α-methyl-d-glucoside from preloaded cells. (7) Kidney cortex slices from 1-day-old rats were unable to accumulate α-methyl-d-glucoside to form a concentration gradient. The ability to concentrate the glucoside increased progressively after birth, reaching near normal in tissue from 15-day-old animals. The data indicate that the transport process in the newborn is rudimentary, failing also to display accelerated efflux phenomenon. (8) α-Methyl-d-glucoside is transported in rat kidney cortex by a mechanism similar in many ways to that ofd-galactose.  相似文献   

2.
The effects of NaCl and Na2SO4 on photosynthetic pigments, malondialdehyde (MDA), Rubisco activity and superoxide dismutase (SOD) activity were investigated in Kalidium foliatum (Pall.) Moq., which is distributed in the saline soil of Hetao irrigation area in Inner Mongolia China. The K. foliatum plants were treated with NaCl (0, 100, 250, 400 and 500 mM), Na2SO4 (0, 100, 250, 400 and 500 mM) and NaCl + Na2SO4 (1: 1, v/v) (0, 100, 250, 400 and 500 mM of Na+ concentration, 0, 50, 125, 200 and 250 mM of Cl and SO 4 2– concentration) for 10 days. Content of chlorophylls and carotenoids were significantly higher than control at increasing NaCl and Na2SO4 concentration, in contrast, were significantly reduced by higher concentration of NaCl + Na2SO4. Rubisco activity reduced steadily at 100 and 250 mM NaCl, while increased at 400 and 500 mM NaCl. Rubisco activity was significantly higher than control at 100 mM Na2SO4, and was no more change under NaCl + Na2SO4 treatment. The SOD activity increased with increasing NaCl and Na2SO4, and increased at moderate NaCl + Na2SO4 treatment. MDA content was lower than control at 250 mM salt concentration. On the basis of the data obtained, K. foliatum showed resistance to salt such as Na+, Cland SO 4 2– , Rubisco activity in K. foliatum might be more sensitive to salt.  相似文献   

3.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

4.
Two filamentous, nitrogen fixing cyanobacteria were examined for their salt tolerance and sodium (Na+) transport.Anabaena torulosa, a saline form, grew efficiently and fixed nitrogen even at 150 mM salt (NaCl) concentration while,Anabaena L-31, a fresh water cyanobacterium, failed to grow beyond 35 mM NaCl.Anabaena torulosa showed a rapidly saturating kinetics of Na+ transport with a high affinity for Na+ (K m, 0.3 mM).Anabaena L-31 had a much lower affinity for Na+ (Km, 2.8 mM) thanAnabaena torulosa and the pattern of uptake was somewhat different. BothAnabaena spp. exhibited an active Na+ extrusion which seems to be mediated by a Na+-K+ ATPase and aided by oxidative phosphorylation.Anabaena L-31 was found to retain much more intracellular Na+ thanAnabaena torulosa. The results suggest that the saline form tolerates high Na+ concentrations by curtailing its influx and also by an efficient Na+ extrusion, although these alone may not entirely account for its success in saline environment.  相似文献   

5.
Shoots of Thellungiella derived by micropropagation were used to estimate the plants'' salt tolerance and ability to regulate Na+ uptake. Two species with differing salt tolerances were studied: Thellungiella salsuginea (halophilla), which is less tolerant, and Thellungiella botschantzevii, which is more tolerant. Although the shoots of neither ecotype survived at 700 mM NaCl or 200 mM Na2SO4, micropropagated shoots of T. botschantzevii were more tolerant to Na2SO4 (10–100 mM) and NaCl (100–300 mM). In the absence of roots, Na2SO4 salinity reduced shoot growth more dramatically than NaCl salinity. Plantlets of both species were able to adapt to salt stress even when they did not form roots. First, there was no significant correlation between Na+ accumulation in shoots and Na+ concentration in the growth media. Second, K+ concentrations in the shoots exposed to different salt concentrations were maintained at equivalent levels to control plants grown in medium without NaCl or Na2SO4. These results suggest that isolated shoots of Thellungiella possess their own mechanisms for enabling salt tolerance, which contribute to salt tolerance in intact plants.Key words: Thellungiella salsuginea, Thellungiella botschantzevii, salt tolerance, isolated shoots, growth, rhizogenesis, ion accumulation  相似文献   

6.
Na+ accumulation was investigated in the roots of 11-d-old cowpea [Vigna unguiculata (L.) Walp.] plants. The relative contribution of different membrane transporters on Na+ uptake was estimated by applying Ca2+, K+, NH4 +, and pharmacological inhibitors. Na+ accumulation into the root symplast was decreased by half in the presence of 1 mM Ca2+ and it was almost abolished by 100 mM K+. The inhibitory effect of external NH4+ on Na+ accumulation was more pronounced in the roots of NH4 +-free growing plants. Na+ accumulation was reduced about 73 % by 0.1 mM flufenamate and it was almost blocked by 2 mM quinine. In addition, 20 mM tetraethylammonium and 1.0 mM Cs+ decreased Na+ accumulation by 28 and 30 %, respectively. These results evidenced that low-affinity Na+ uptake by cowpea roots depends on Ca2+-sensitive and Ca2+-insensitive pathways. The Ca2+-sensitive pathway is probably mediated by nonselective cation channels and the Ca2+-insensitive one may involve K+ channels and to a lesser extent NH4 +-sensitive K+ transporters.  相似文献   

7.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

8.
The effects of extracellular Na+, K+ and Cl? on neurite outgrowth of PC12 pheochromocytoma cells were studied. Nerve growth factor (NGF)-induced neurite formation was inhibited upon substitution of choline chloride for NaCl under normal culture conditions. It was found that neurite formation increased proportionately with the concentration of Na+ in medium up to 150 mM. When PC12 cells were exposed to NGF in suspension culture followed by transfer to new dishes, they showed neurite extention in response to NGF in an RNA- and protein synthesis-independent manner. Under these conditions, neurite outgrowth occurred normally in 60–150 mM Na+, whereas it decreased significantly at lower concentrations of Na+. Na+ dependency was also observed for cyclic AMP-mediated neurite formation of PC12 cells. In contrast, neurite outgrowth was independent of K+ in the range 5–106 mM, suggesting that membrane potential did not play a role in this process. No alterations were observed in neurite outgrowth with Cl? replaced by NO?3, SO2?4, or 2-hydroxyethanesulfonate. Thus, extracellular Na+ plays a role in controlling neurite formation of these cells. An attempt was made to relate this effect to a decrease in cytoplasmic Ca2+ concentration monitored by a fluorescent dye sensitive to Ca2+.  相似文献   

9.
In the present investigation, intracellular sodium ([Na+]i) levels were determined in GH4C1 cells using the fluorescent probe SBFI. Fluorescence was determined by excitation at 340 nm and 385 nm, and emission was measured at 500 nm. Intracellular free sodium ([Na+]i) was determined by comparing the ratio 340/385 to a calibration curve. The ratio was linear between 10 and 60 mM Na+. Resting [Na+]i in GH4C1 cells was 26 ± 6.2 mM (mean ± SD). In cells incubated in Na+-buffer [Na+]i decreased to 3 ± 3.6 mM. If Na+/K+ ATPase was inhibited by incubating the cells with 1 mM ouabain, [Na+]i increased to 47 ± 12.8 mM in 15 min. Stimulating the cells with TRH, phorbol myristyl acetete, or thapsigargin had no effect on [Na+]i. Incubating the cells in Ca2+-buffer rapidly increased [Na+]i. The increase was not inhibited by tetrodotoxin. Addition of extracellular Ca2+, nimodipine, or Ni2+ to these cells immediately decreased [Na+]i, whereas Bay K 8644 enhanced the influx of Na+. In cells where [Na+]i was increased the TRH-induced increase in intracellular free calcium ([Ca2+]i) was decreased compared with control cells. Our results suggest that Na+ enters the cells via Ca2+ channels, and [Na+]i may attenuate TRH-induced changes in [Ca2+]i in GH4C1 cells. © 1993 Wiley-Liss, Inc.  相似文献   

10.
  • 1.1. Unidirectional Na+ influx in lamprey red blood cells was determined using 22Na as a tracer.
  • 2.2. Total Na+ uptake and amiloride-inhibitable Na+ influx increased in a saturable fashion as a function of external Na+ concentration (Nae).
  • 3.3. At 141 mM Nae, the average value of net Na+ influx was 13 ± 1.1 and the amiloride-sensitive Na+ influx was 5.3±1.1 mmol/l cells per hr (±SE).
  • 4.4. The amiloride-sensitive component of Na+ influx was significantly activated by 10−5 M isoproterenol, by 2 × 10−5 M DNP, and by cell shrinkage.
  • 5.5. Furosemide (1 mM) had no effect on the Na+ transport in red cells.
  • 6.6. The residual amiloride-insensitive component of Na+ transport was a linear function of Nae in the range of 5–141 mM. This transport seems to be accounted for by simple diffusion.
  相似文献   

11.
The accumulation of inorganic and organic osmolytes and their role in osmotic adjustment were investigated in roots and leaves of vetiver grass (Vetiveria zizanioides) seedlings stressed with 100, 200, and 300 mM NaCl for 9 days. The results showed that, although the contents of inorganic (K+, Na+, Ca2+, Mg2+, Cl, NO3, SO42− and H2PO3)) and organic (soluble sugar, organic acids, and free amino acids) osmolytes all increased with NaCl concentration, the contribution of inorganic ions (mainly Na+, K+, and Cl) to osmotic adjustment was higher (71.50–80.56% of total) than that of organic solutes (19.43–28.50%). The contribution of inorganic ions increased and that of organic solutes decreased in roots with the enhanced NaCl concentration, whereas the case in leaves was opposite. On the other hand, the osmotic adjustment was only effective for vetiver grass seedlings under moderate saline stress (less than 200 mM NaCl).  相似文献   

12.
Acidaminococcus fermentans is able to ferment glutamate to ammonia, CO2, acetate, butyrate, and H2. The molecular hydrogen (approximately 10 kPa; E′ = –385 mV) stems from NADH generated in the 3-hydroxybutyryl-CoA dehydrogenase reaction (E°′ = –240 mV) of the hydroxyglutarate pathway. In contrast to growing cells, which require at least 5 mM Na+, a Na+-dependence of the H2-formation was observed with washed cells. Whereas the optimal glutamate fermentation rate was achieved already at 1 mM Na+, H2 formation commenced only at > 10 mM Na+ and reached maximum rates at 100 mM Na+. The acetate/butyrate ratio thereby increased from 2.0 at 1 mM Na+ to 3.0 at 100 mM Na+. A hydrogenase and an NADH dehydrogenase, both of which were detected in membrane fractions, are components of a model in which electrons, generated by NADH oxidation inside of the cytoplasmic membrane, reduce protons outside of the cytoplasmic membrane. The entire process can be driven by decarboxylation of glutaconyl-CoA, which consumes the protons released by NADH oxidation inside the cell. Hydrogen production commences exactly at those Na+ concentrations at which the electrogenic H+/Na+-antiporter glutaconyl-CoA decarboxylase is converted into a Na+/Na+ exchanger. Received: 3 May 1996 / Accepted: 12 August 1996  相似文献   

13.
14.
—This is a report of the effect of extreme changes in plasma sodium concentration induced by chronic (5 d) water deprivation and hypertonic saline injections and acute (4 h) overhydration with hypotonic glucose or fructose on the water and electrolyte content and levels of selected metabolites in the brains of young mice. In the dehydrated hypernatremic mice (plasma Na+, 186 × 3 mequiv./1) significant increases were found in brain glucose (82%), alanine (16%), aspartate (45%), glutamate (19%), gamma-amino butyrate (34%) and glutamine (42%) concentrations. In striking contrast, water-intoxicated mice (plasma Na+, 110 × 4 mequiv./1) had significantly decreased levels of alanine (17%), aspartate (38%) and glutamate (33%). Significant reductions in brain lactate (30–40%) and malate concentrations (23%) in both groups of experimental mice are suggestive of reduced cerebral metabolic rate. During adaptation to increased or decreased environmental salinity, levels of amino acids in amphibian brain increase or decrease, respectively, to maintain osmotic equilibrium and to limit the loss or gain of water in brain. The data show that a similar protective response can be evoked in mammalian brain.  相似文献   

15.
We have investigated whether muscarinic receptors modulate the release of [3H]ACh elicited by secretagogues that act by different mechanisms in rat cerebral cortical synaptosomes. Oxotremorine (10 M) reduced the calcium-dependent [3H]ACh release induced by mild K+-depolarization (10 and 15 mM K+), but not that by higher K+ concentrations. The ACh-release induced by A23187 (0.2–5 g/ml), liposomes laden with 113 mM CaCl2, or 4-aminopyridine (1–10 mM) was not modulated by oxotremorine. Ouabain (100 M)-induced release of [3H]ACh was reduced by oxotremorine in normal but not calcium-free KR, indicating that extracellular calcium-uptake but not Na+, K+-ATPase activity may be necessary for release-modulation. With respect to possible second messenger systems, dibutyrylcyclic AMP (0.1–2 mM), dibutyrylcyclic GMP (0.1–2 mM), forskolin (100 M), and phorbol ester (0.3–3 g/ml) were without effect on release or release-modulation. These results are consistent with an involvement of K+-channels and voltage-sensitive calcium-channels in the muscarinic release-inhibition process. They argue against an involvement of Na+, K+-ATPase, adenylate cyclase, guanylate cyclase, and phosphatidylinositol turnover in the release-modulation process.  相似文献   

16.
Sodium transport through the molluscan erythrocyte membrane was examined using 22Na as a tracer. Incubation of the red cells in standard saline resulted in a rapid 22Na uptake reaching steady state concentration (about 21.5 mmol/l cells) in the first 60 min. A similar pattern in the time course of 22Na uptake was seen in the erythrocytes incubated in mantle fluid. The average value of unidirectional Na+ influx, measured as a 5-min 22Na uptake, was 7.76 ± 0.36 mmol/1 cells/5 min or 93 ± 4.3 mmol/1 cells/hr. The initial rate of Na+ influx increased in a saturable fashion as a function of external Na+ concentration with apparent AT., of 380±12mM and Vmax of 14.3 ± 2.4 mmol/1 cells/5 min. Amiloride (1 mM), furosemide (1 mM), and DIDS (0.1 mM) had no effect on either initial Na+ influx (5 min 22Na uptake) or equilibrium Na+ concentration (60 min and 120min 22Na uptake) in the molluscan red cells exposed to standard saline. Quinine (1 mM) caused a significant fall in the initial Na+ influx (by 48%) and in 60-min 22Na uptake (by 32%) as compared with control levels. In the presence of 0.1 mM ouabain, 22Na uptake into the red cells was enhanced by an average 27% and 44% during 60 min and 120 min of cell incubation, respectively. The ouabain-sensitive Na+ accumulation in the red cells reflected a contribution of the Na, K-pump to Na+ transport and the mean value was 5.6 ± 1.0 mmol/1 cells/hr.  相似文献   

17.
Protoveratrine-(5 M) stimulated aerobic glycolysis of incubated rat brain cortex slices that accompanies the enhanced neuronal influx of Na+ is blocked by tetrodotoxin (3 M) and the local anesthetics, cocaine (0.1 mM) and lidocaine (0.5 mM). On the other hand, high [K+]-stimulated aerobic glycolysis that accompanies the acetylcholine-sensitive enhanced glial uptakes of Na+ and water is unaffected by acetylcholine (2 mM). Experiments done under a variety of metabolic conditions show that there exists a better correlation between diminished ATP content of the tissue and enhanced aerobic glycolysis than between tissue ATP and the ATP-dependent synthesis of glutamine. Whereas malonate (2 mM) and amino oxyacetate (5 mM) suppress ATP content and O2 uptake, stimulate lactate formation, but have little effect on glutamine levels, fluoroacetate (3 mM) suppresses glutamine synthesis in glia, presumably by suppressing the operation of the citric acid cycle, with little effect on ATP content, O2 uptake, and lactate formation. Exogenous citrate (5 mM), which may be transported and metabolized in glia but not in neurons, inhibits lactate formation by cell free acetone-dried powder extracts of brain cortex but not by brain cortex slices. These results suggest that the neuron is the major site of stimulated aerobic glycolysis in the brain, and that under our experimental conditions glycolysis in glia is under lesser stringent metabolic control than that in the neuron. Stimulation of aerobic glycolysis by protoveratrine occurs due to diminution of the energy charge of the neuron as a result of stimulation of the sodium pump following tetrodotoxin-sensitive influx of Na+; stimulation by high [K+, NH4 +, or Ca2+ deprivation occurs partly by direct stimulation of key enzymes of glycolysis and partly by a fall in the tissue ATP concentration.  相似文献   

18.
Yuncai Hu  Urs Schmidhalter 《Planta》1998,204(2):212-219
Wheat leaf growth is known to be spatially affected by salinity. The altered spatial distribution of leaf growth under saline conditions may be associated with spatial changes in tissue mineral elements. The objective of this study was to evaluate the spatial distributions of mineral elements and their net deposition rates in the elongating and mature zones of leaf 4 of the main stem of spring wheat (Triticum aestivum L. cv. Lona) during its linear growth phase under saline soil conditions. Plants were grown in an illitic-chloritic silty loam with 0 and 120 mM NaCl. Three days after emergence of leaf 4, sampling was begun at 3 and 13 h into the 16-h light period. Spatial distributions of fresh weight (FW), dry weight (DW), and Na+, K+, Cl, NO 3, Ca2+, Mg2+, total P, and total N in the elongating and mature tissues were determined on a millimeter scale. The patterns of spatial distribution of Na+, Cl, K+, NO3 , and Ca2+ in the growing leaves were affected by salinity, while those of Mg2+, total P, and total N were not. Sodium, K+, Cl, Ca2+, Mg2+, and total N concentrations (mmol · kg−1 FW) were consistently higher at 120 mM NaCl than at 0 mM NaCl along the leaf axis from the leaf base, whereas NO3 concentration was lower at 120 mM NaCl. Deposition rates of all nutrients were greatest in the elongation zone. The elongation zone was the strongest sink for mineral elements in the leaf tissues. Local net deposition rates of Na+, Cl, Ca2+, and Mg2+ (mmol · kg−1 FW · h−1) in the most actively elongating zone were enhanced by 120 mM NaCl, whereas for NO3 this was depressed. The lower supply of NO 3 to growing leaves may be responsible for the inhibition of growth under saline conditions. Higher tissue concentrations of Na+ and Cl may cause ion imbalance but probably did not result in ion toxicity in the growing leaves. Potassium, Ca2+, Mg2+, total P, and total N are less plausibly responsible for the reduction in leaf growth in this study. Higher tissue K+ and Ca2+ concentrations at 120 mM NaCl are probably due to the presence of high Ca2+ in the soil of this study. Received: 13 March 1997 / Accepted: 9 June 1997  相似文献   

19.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

20.
Summary Measurements have been made of the pH in the extracellular space, adjacent to the neural tube, in 73 isolated chick embryos in vitro at stages from 4–22 somites. A pH of 7.8–8.4 was observed in the segmented region, while caudally, in the segmental plate, the pH was consistently lower falling by as much as 0.5 pH units at the regressing primitive streak. Variations were noted in the pH of embryos of the same age but the regional variation in pH was a consistent finding in all of the embryos examined. The buffering capacity of the extracellular space was found to be 12.9 mequiv/pH unit/1 in the segmented region and 13.9 mequiv/pH unit/1 in the segmental plate. Thus it is unlikely that the regional variations in pH result from local variations in the buffering power of the extracellular space. Varying the K+, Cl-, Mg2+ or HCO 3 - ion concentrations in the bathing medium caused little change in the intra-embryonic pH, while reducing the concentrations of Na+ or Ca2+ caused a small acidification. This suggests that the ectoderm and endoderm form an effective barrier between the embryo and the external environment. Exposure of the embryo to KCN reduced the intra-embryonic pH suggesting that the alkaline environment is maintained by active processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号