首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
J S Butler  J M Clark 《Biochemistry》1984,23(5):809-815
Purified preparations of eucaryotic initiation factor 4B (eIF4B) from wheat germ bind the monocistronic, uncapped, mRNA satellite tobacco necrosis virus RNA (STNV RNA) in nitrocellulose-mediated binding assays. This reaction is mRNA specific and yields dissociation constants (Kd) in the 10(-7)-10(-8) M range, depending upon the particular enzyme preparation tested. Purified wheat germ eIF4A, in the presence or absence of ATP, does not bind STNV RNA efficiently, but added eIF4A and ATP do enhance the efficiency of the eIF4B-dependent binding of STNV RNA. Wheat germ eIF4B binds the oligonucleotide containing the 5'-terminal 52 nucleotides of STNV RNA (designated 1-52) with the same affinity as intact STNV RNA. This binding affinity is less with the 1-44 oligonucleotide of STNV RNA and does not occur with the 1-33 oligonucleotide of STNV RNA that contains the 5'-terminal untranslated region and the initiator AUG codon at positions 30-32 of this mRNA. Wheat germ eIF4B therefore binds the translation initiation region of STNV RNA, and this binding requires up to 20 nucleotides on the 3' side of the initiator AUG codon of this mRNA. Wheat germ eIF4B also efficiently binds an oligonucleotide containing nucleotides from positions 13-52 in from the 5' terminus of STNV RNA, thereby establishing that the postulated 5'-terminal stem and loop secondary structure of STNV RNA [Leung, D. W., Browning, K. S., Heckman, J. E., RajBhandary, U. L., & Clark, J. M., Jr. (1979) Biochemistry 18, 1361-1366] is not functional or essential for this specific binding reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In an attempt to elucidate the role of the 5'-terminal 7-methylguanosine residue in translation of mammalian mRNAs, vesicular stomatitis virus (VS virus), and reovirus mRNAs containing and lacking this residue, and also Qbeta RNA, were translated in cell-free extracts from reticulocytes and wheat germ under a variety of ionic conditions. Optimal translation of mRNAs lacking a 5' m7G occurred at concentrations of KOAc or KCl which were lower than those optimal for normal "capped" mRNAs. However, this salt dependence was much less marked in the mammalian reticulocyte extract and, at salt concentrations optimal for translation of normal capped mRNAs, reticulocyte lysates translated uncapped with mRNAs at 30 to 60% the normal efficiency. At low K+ concentrations, wheat germ ribosomes bound and translated appreciable amounts of uncapped VS virus mRNA; controls showed that no m7G residue is added to the 5' end of the bound RNA. Analogues of the 5' end, such as m7GpppAm, inhibited translation of both normal and uncapped VS virus RNAs in wheat germ extracts to about the same extent, but the efficiency of its action was reduced at low K+ concentrations. We conclude that there is a reduced importance of the 5' m7G residue in ribosome-mRNA recognition at low K+ concentrations, and that translation of mRNAs in reticulocyte extract is, under any reaction conditions, less dependent on the presence of a 5' "cap" than in wheat germ extracts.  相似文献   

4.
5.
The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5' cap structure and a 3' poly(A) tail. We show that in a cell-free translation system derived from wheat germ, STNV RNA lacking the 600-nucleotide trailer is translated an order of magnitude less efficiently than full-size RNA. Deletion analyses positioned the translational enhancer domain (TED) within a conserved hairpin structure immediately downstream from the coat protein cistron. TED enhances translation when fused to a heterologous mRNA, but the level of enhancement depends on the nature of the 5' untranslated sequence and is maximal in combination with the STNV leader. The STNV leader and TED have two regions of complementarity. One of the complementary regions in TED resembles picornavirus box A, which is involved in cap-independent translation but which is located upstream of the coding region.  相似文献   

6.
7.
The effect of 7-methylguanosine 5'-monophosphate (pm7G) on mRNA translation was examined in the wheat germ and rabbit reticulocyte cell-free systems. Differences between the two cell extracts with respect to inhibition of translation by pm7G can be attributed to different conditions commonly used for in vitro protein synthesis. Inhibition of globin mRNA translation by pm7G is strongly influenced by the concentration of potassium salt and to a lesser extent by incubation temperature. The effectiveness of the inhibitor increases with potassium salt concentration and diminishes with increasing temperature. Translation is inhibited by pm7G at physiological K+ concentration in both cell-free systems in that only the rate of binding of mRNA to ribosomes is affected by the inhibitor, not the extent of binding. Translation of different capped mRNAs is affected differently by pm7G, but this appears to be property of the mRNA rather than the translation system. These results indicate that while the 5'-terminal cap structure may be more important for translation of some mRNA's than others, this structure functions in translation of capped mRNAs in all types of cells.  相似文献   

8.
A cloverleaf structure at the 5' terminus of poliovirus RNA binds viral and cellular proteins. To examine the role of the cloverleaf in poliovirus replication, we determined how cloverleaf mutations affected the stability, translation and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Mutations within the cloverleaf destabilized viral RNA in these reactions. Adding a 5' 7-methyl guanosine cap fully restored the stability of the mutant RNAs and had no effect on their translation. These results indicate that the 5' cloverleaf normally protects uncapped poliovirus RNA from rapid degradation by cellular nucleases. Preinitiation RNA replication complexes formed with the capped mutant RNAs were used to measure negative-strand synthesis. Although the mutant RNAs were stable and functional mRNAs, they were not active templates for negative-strand RNA synthesis. Therefore, the 5' cloverleaf is a multifunctional cis-acting replication element required for the initiation of negative-strand RNA synthesis. We propose a replication model in which the 5' and 3' ends of viral RNA interact to form a circular ribonucleoprotein complex that regulates the stability, translation and replication of poliovirus RNA.  相似文献   

9.
S Wang  K S Browning    W A Miller 《The EMBO journal》1997,16(13):4107-4116
For recognition by the translational machinery, most eukaryotic cellular mRNAs have a 5' cap structure [e.g. m7G(5')ppp(5')N]. We describe a translation enhancer sequence (3'TE) located in the 3'-untranslated region (UTR) of the genome of the PAV barley yellow dwarf virus (BYDV-PAV) which stimulates translation from uncapped mRNA by 30- to 100-fold in vitro and in vivo to a level equal to that of efficient capped mRNAs. A four base duplication within the 3'TE destroyed the stimulatory activity. Efficient translation was recovered by addition of a 5' cap to this mRNA. Translation of both uncapped mRNA containing the 3'TE in cis and capped mRNA lacking any BYDV-PAV sequence was inhibited specifically by added 3'TE RNA in trans. This inhibition was reversed by adding initiation factor 4F (eIF4F), suggesting that the 3'TE, like the 5' cap, mediates eIF4F-dependent translation initiation. The BYDV-PAV 5'UTR was necessary for the 3'TE to function, except when the 3'TE itself was moved to the 5'UTR. Thus, the 3'TE is sufficient for recruiting the translation factors and ribosomes, while the viral 5'UTR may serve only for the long distance 3'-5' communication. Models are proposed to explain this novel mechanism of cap-independent translation initiation facilitated by the 3'UTR.  相似文献   

10.
The cap analogue, 7-methylguanosine-5′-phosphate (pm7G), inhibits the translation of the noncapped STNV (satellite tobacco necrosis virus) RNA and CPMV (cowpea mosaic virus) RNA in the in vitro wheat germ protein synthesizing system. While the translation of some capped mRNAs is inhibited more strongly by the analogue, other capped mRNAs have a level of sensitivity similar to that of the noncapped RNAs. Evidence is presented demonstrating that the effect of the analogue is exerted at a cap binding site even when it is inhibiting noncapped mRNAs. These results therefore indicate that the cap binding site of the translational system is either part of or is closely linked to another mRNA binding component, this component being specific for a site on the mRNA other than the 5′ cap. The observations also suggest caution in the use of pm7G inhibition to indicate the presence of a 5′ cap on a particular mRNA.  相似文献   

11.
The translational enhancer domain (TED) of satellite tobacco necrosis virus (STNV) RNA stimulates translation of uncapped RNAs autonomously. Here we set out to identify the 5' and 3' extremities of TED and features of these sequences with respect to translation. We found that both in wheat germ extract and in tobacco protoplasts, the 5' border is confined to 3 nt. Mutational analysis revealed that the autonomous function of TED is sensitive to 5' flanking sequences. At the 3' end of TED, 23 nt have a cumulative, quantitative effect on translation in wheat germ extract, whereas in tobacco protoplasts, the most 3' 14 nt of these 23 nt do not enhance translation. The 5' and 3' sequence requirements triggered the development of a new secondary structure model. In this model, TED folds into a phylogenetically conserved stem-loop structure in which the essential 5' nucleotides base-pair with the 3' nucleotides that stimulate translation both in vitro and in vivo. Importantly, the 14 3' nucleotides in TED that stimulate translation in the wheat germ extract only do not require the predicted base-pairing in order to function. The discrepancy between in vitro and in vivo sequence requirements thus correlates with potential base-pairing requirements, opening the possibility that TED contains two functional domains.  相似文献   

12.
13.
The genomic RNAs of flaviviruses such as dengue virus (DEN) have a 5' m7GpppN cap like those of cellular mRNAs but lack a 3' poly(A) tail. We have studied the contributions to translational expression of 5'- and 3'-terminal regions of the DEN serotype 2 genome by using luciferase reporter mRNAs transfected into Vero cells. DCLD RNA contained the entire DEN 5' and 3' untranslated regions (UTRs), as well as the first 36 codons of the capsid coding region fused to the luciferase reporter gene. Capped DCLD RNA was as efficiently translated in Vero cells as capped GLGpA RNA, a reporter with UTRs from the highly expressed alpha-globin mRNA and a 72-residue poly(A) tail. Analogous reporter RNAs with regulatory sequences from West Nile and Sindbis viruses were also strongly expressed. Although capped DCLD RNA was expressed much more efficiently than its uncapped form, uncapped DCLD RNA was translated 6 to 12 times more efficiently than uncapped RNAs with UTRs from globin mRNA. The 5' cap and DEN 3' UTR were the main sources of the translational efficiency of DCLD RNA, and they acted synergistically in enhancing translation. The DEN 3' UTR increased mRNA stability, although this effect was considerably weaker than the enhancement of translational efficiency. The DEN 3' UTR thus has translational regulatory properties similar to those of a poly(A) tail. Its translation-enhancing effect was observed for RNAs with globin or DEN 5' sequences, indicating no codependency between viral 5' and 3' sequences. Deletion studies showed that translational enhancement provided by the DEN 3' UTR is attributable to the cumulative contributions of several conserved elements, as well as a nonconserved domain adjacent to the stop codon. One of the conserved elements was the conserved sequence (CS) CS1 that is complementary to cCS1 present in the 5' end of the DEN polyprotein open reading frame. Complementarity between CS1 and cCS1 was not required for efficient translation.  相似文献   

14.
The 7-methylguanosine (m7G) residue present in the m7G5' ppp5'X-"CAP" structure of rabbit globin mRNA was removed quantitatively by periodate oxidation followed by beta-elimination in the presence of cyclohexylamine. The RNA thus treated was intact and exhibited no signs of degradation as examined by polyacrylamide gel electrophoresis in formamide. Assay for protein synthesis using a wheat germ cell-free system showed that the globin mRNA lacking m7G had lost most of its messenger activity. Identical treatment, of satellite tobacco necrosis virus (STNV) RNA, which does not contain the 5'-terminal "CAP" structure, resulted in no loss of its mRNA activity. Since the importance of the m7G residue in eukaryotic mRNA has not yet been shown essential for translation in vivo, both untreated and treated globin mRNAs were injected into frog oocytes and their translation into globin was measured at intervals over a ninety-six hour period. Globin mRNA either treated with periodate alone or lacking in m7g altogether were both found to have lost more than 90% of their activity in vivo.  相似文献   

15.
Although template-active RNA in dry seeds and embryos has attracted widespread interest, there have been no published reports about 5'-terminal "capping" sequences in such RNA. Boro[3H]hydride labeling of periodate-oxidized termini and high performance liquid chromatography of cap oligonucleotides have been used to compare terminal sequences in poly(A)-rich RNA from dry and germinating embryos. As is the case in germinating embryos, poly(A)-rich RNA from dry embryos contains only "type 0" cap sequences, i.e., m7G(5')ppp(5')N, in which m7G is the 7-methylguanosine cap and N is any of the classical ribonucleosides: adenosine (A), guanosine (G), cytidine (C),a nd uridine (U). Striking differences between the cell-free translational capacities of bulk messenger RNA (mRNA) populations from dry and germinating embryos are not reflected in signal differences in their proportions of "type 0" cap structures: in general, there is approximately 40% m7G(5')ppp(5')A, with roughly equivalent amounts of m7G(5')ppp(5')G and m7G(5')ppp(5')C accounting for most of the remaining sequences. The findings with mRNA from dry plant embryos serve to emphasize interesting differences between patterns of methylation in the capped and uncapped RNA molecules in higher plants and animals; the differences have not been previously noted in the literature and are the subject of brief comment in this paper.  相似文献   

16.
17.
The 5' end of eukaryotic mRNAs are modified by the addition of a 7-methyl guanosine (m7G) cap. The role of the cap in translation has been well established. Additionally, studies conducted in vitro or in microinjected Xenopus oocytes have implicated the cap in RNA processing and transport. To determine the fate of uncapped mRNA in intact yeast cells, conditional alleles of the gene encoding the capping enzyme guanylyltransferase subunit (CEG1) were generated. RNA analysis of temperature-sensitive ceg1 strains revealed an accumulation of unspliced pre-mRNAs and a corresponding decrease in spliced mRNAs at the restrictive temperature. A substantial proportion of spliced mRNA was also uncapped. Therefore, the cap appears to stimulate, but is not absolutely required for, splicing in vivo. In addition, steady-state levels of several mRNAs were decreased, perhaps due to increased degradation of uncapped mRNAs. In contrast to splicing, mRNA polyadenylation and transport to the cytoplasm were unaffected.  相似文献   

18.
The 3' cap-independent translation element (BTE) of Barley yellow dwarf virus RNA confers efficient translation initiation at the 5' end via long-distance base pairing with the 5'-untranslated region (UTR). Here we provide evidence that the BTE functions by recruiting translation initiation factor eIF4F. We show that the BTE interacts specifically with the cap-binding initiation factor complexes eIF4F and eIFiso4F in a wheat germ extract (wge). In wge depleted of cap-interacting factors, addition of eIF4F (and to a lesser extent, eIFiso4F) allowed efficient translation of an uncapped reporter construct (BLucB) containing the BTE in its 3' UTR. Translation of BLucB required much lower levels of eIF4F or eIFiso4F than did a capped, nonviral mRNA. Both full-length eIF4G and the carboxy-terminal half of eIF4G lacking the eIF4E binding site stimulated translation to 70% of the level obtained with eIF4F, indicating a minor role for the cap-binding protein, eIF4E. In wge inhibited by either BTE in trans or cap analog, eIF4G alone restored translation nearly as much as eIF4F, while addition of eIF4E alone had no effect. The BTE bound eIF4G (Kd = 177 nm) and eIF4F (Kd = 37 nm) with high affinity, but very weakly to eIF4E. These interactions correlate with the ability of the factors to facilitate BTE-mediated translation. These results and previous observations are consistent with a model in which eIF4F is delivered to the 5' UTR by the BTE, and they show that eIF4G, but not eIF4E, plays a major role in this novel mechanism of cap-independent translation.  相似文献   

19.
20.
The procedure for isolation of nucleotide pyrophosphatase (E.C. 3.6.1.9.) from potato has been modified to yield an endonuclease-free preparation purified 2300-fold. The enzyme was used for specific cleavage of pyrophosphate linkages in the 5'-terminal cap (m7GpppN) of several eukaryotic messenger RNAs. Enzymatic removal of 5'-terminal pm7G from reovirus, rabbit globin and Artemia salina mRNAs resulted in an almost complete loss (greater than 80%) of their template activities in a cell-free protein synthesizing system from wheat germ. Incubation with nucleotide pyrophosphatase did not decrease the translation of phage f2 RNA in an Escherichia coli cell-free system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号