首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells   总被引:2,自引:0,他引:2  
Huang Z  Chen D  Zhang K  Yu B  Chen X  Meng J 《Cellular signalling》2007,19(11):2286-2295
Myostatin, a member of the transforming growth factor beta (TGF-beta) superfamily, is a negative regulator of skeletal muscle growth. We found that myostatin could activate c-Jun N-terminal kinase (JNK) signaling pathway in both proliferating and differentiating C2C12 cells. Using small interfering RNA (siRNA) mediated activin receptor type IIB (ActRIIB) knockdown, the myostatin-induced JNK activation was significantly reduced, indicating that ActRIIB was required for JNK activation by myostatin. Transfection of C2C12 cells with TAK1-specific siRNA reduced myostatin-induced JNK activation. In addition, JNK could not be activated by myostatin when the expression of MKK4 was suppressed with MKK4-specific siRNA, suggesting that TAK1-MKK4 cascade was involved in myostatin-induced JNK activation. We also found that blocking JNK signaling pathway by pretreatment with JNK specific inhibitor SP600125, attenuated myostatin-induced upregulation of p21 and downregulation of the differentiation marker gene expression. Furthermore, it was also observed that the presence of SP600125 almost annulled the growth inhibitory role of myostatin. Our findings provide the first evidence to reveal the involvement of JNK signaling pathway in myostatin's function as a negative regulator of muscle growth.  相似文献   

2.
c-Jun N-terminal kinase (JNK) contributes to metalloproteinase (MMP) gene expression and joint destruction in inflammatory arthritis. It is phosphorylated by at least two upstream kinases, the mitogen-activated protein kinase kinases (MEK) MKK4 and MKK7, which are, in turn, phosphorylated by MEK kinases (MEKKs). However, the MEKKs that are most relevant to JNK activation in synoviocytes have not been determined. These studies were designed to assess the hierarchy of upstream MEKKs, MEKK1, MEKK2, MEKK3, and transforming growth factor-β activated kinase (TAK)1, in rheumatoid arthritis (RA). Using either small interfering RNA (siRNA) knockdown or knockout fibroblast-like synoviocytes (FLSs), MEKK1, MEKK2, or MEKK3 deficiency (either alone or in combination) had no effect on IL-1β-stimulated phospho-JNK (P-JNK) induction or MMP expression. However, TAK1 deficiency significantly decreased P-JNK, P-MKK4 and P-MKK7 induction compared with scrambled control. TAK1 knockdown did not affect p38 activation. Kinase assays showed that TAK1 siRNA significantly suppressed JNK kinase function. In addition, MKK4 and MKK7 kinase activity were significantly decreased in TAK1 deficient FLSs. Electrophoretic mobility shift assays demonstrated a significant decrease in IL-1β induced AP-1 activation due to TAK1 knockdown. Quantitative PCR showed that TAK1 deficiency significantly decreased IL-1β-induced MMP3 gene expression and IL-6 protein expression. These results show that TAK1 is a critical pathway for IL-1β-induced activation of JNK and JNK-regulated gene expression in FLSs. In contrast to other cell lineages, MEKK1, MEKK2, and MEKK3 did not contribute to JNK phosphorylation in FLSs. The data identify TAK1 as a pivotal upstream kinase and potential therapeutic target to modulate synoviocyte activation in RA.  相似文献   

3.
4.
5.
6.
Activation of the Jun-N-terminal kinase (JNK) signaling cascade by phorbol esters (TPA) or protein kinase C (PKC) is well documented, although the underlying mechanism is not known. Here, we demonstrate that the receptor for activated C kinase 1 (RACK1) serves as an adaptor for PKC-mediated JNK activation. Phosphorylation of JNK by PKC occurs on Ser129 and requires the presence of RACK1. Ser129 phosphorylation augments JNK phosphorylation by MKK4 and/or MKK7 and is required for JNK activation by TPA, TNFalpha, UV irradiation, and PKC, but not by anisomycin or MEKK1. Inhibition of RACK1 expression by siRNA attenuates JNK activation, sensitizes melanoma cells to UV-induced apoptosis, and reduces their tumorigenicity in nude mice. In finding the role of RACK1 in activation of JNK by PKC, our study also highlights the nature of crosstalk between these two signal-transduction pathways.  相似文献   

7.
Heterotrimeric G proteins stimulate the activities of two stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase in mammalian cells. In this study, we examined whether alpha subunits of G(i) family activate JNK using transient expression system in human embryonal kidney 293 cells. Constitutively activated mutants of Galpha(i1), Galpha(i2), and Galpha(i3) increased JNK activity. In contrast, constitutively activated Galpha(o) and Galpha(z) mutants did not stimulate JNK activity. To examine the mechanism of JNK activation by Galpha(i), kinase-deficient mutants of mitogen-activated protein kinase kinase 4 (MKK4) and 7 (MKK7), which are known to be JNK activators, were transfected into the cells. However, Galpha(i)-induced JNK activation was not blocked effectively by kinase-deficient MKK4 and MKK7. In addition, activated Galpha(i) mutant failed to stimulate MKK4 and MKK7 activities. Furthermore, JNK activation by Galpha(i) was inhibited by dominant-negative Rho and Cdc42 and tyrosine kinase inhibitors, but not dominant-negative Rac and phosphatidylinositol 3-kinase inhibitors. These results indicate that Galpha(i) regulates JNK activity dependent on small GTPases Rho and Cdc42 and on tyrosine kinase but not on MKK4 and MKK7.  相似文献   

8.
9.
JNK3 alpha 1 is predominantly a neuronal specific MAP kinase that is believed to require, like all MAP kinases, both threonine and tyrosine phosphorylation for maximal enzyme activity. In this study we investigated the in vitro activation of JNK3 alpha 1 by MAP kinase kinase 4 (MKK4), MAP kinase kinase 7 (MKK7), and the combination of MKK4 + MKK7. Mass spectral analysis showed that MKK7 was capable of monophosphorylating JNK3 alpha 1 in vitro, whereas both MKK4 and MKK7 were required for bisphosphorylation and maximal enzyme activity. Measuring catalysis under Vmax conditions showed MKK4 + MKK7-activated JNK3 alpha 1 had Vmax 715-fold greater than nonactivated JNK3 alpha 1 and MKK7-activated JNK3 alpha 1 had Vmax 250-fold greater than nonactivated JNK3 alpha 1. In contrast, MKK4-activated JNK3 alpha 1 had no increase in Vmax compared to nonactivated levels and had no phosphorylation on the basis of mass spectrometry. These data suggest that MKK7 was largely responsible for JNK3 alpha 1 activation and that a single threonine phosphorylation may be all that is needed for JNK3 alpha 1 to be active. The steady-state rate constants kcat, Km(GST-ATF2++), and Km(ATP) for both monophosphorylated and bisphosphorylated JNK3 alpha 1 were within 2-fold between the two enzyme forms, suggesting the addition of tyrosine phosphorylation does not affect the binding of ATF2, ATP, or maximal turnover. Finally, the MAP kinase inhibitor, SB203580, had an IC50 value approximately 4-fold more potent on the monophosphorylated JNK3 alpha 1 compared to the bisphosphorylated JNK3 alpha 1, suggesting only a modest effect of tyrosine phosphorylation on inhibitor binding.  相似文献   

10.
JNK (c-Jun N-terminal kinase) is a member of the MAPK (mitogen-activated protein kinase) family that regulates a range of biological processes implicated in tumorigenesis and neurodegenerative disorders. For example, genetic studies have demonstrated that the removal of specific Jnk genes can reduce neuronal death associated with cerebral ischaemia. As such, targeting JNK signalling constitutes an obvious opportunity for therapeutic intervention. However, MAPK inhibitors can display toxic effects. Consequently, dual-specificity MKKs (MAPK kinases) may represent more attractive targets. In particular, evidence that blocking JNK activation by removing MKK4 offers an effective therapy to treat pathological conditions has started to emerge. MKK4 was the first JNK activator identified. The remaining level of JNK activity in cells lacking MKK4 expression led to the discovery of a second activator of JNK, named MKK7. Distinct phenotypic abnormalities associated with the targeted deletion of Mkk4 and Mkk7 in mice have revealed that MKK4 and MKK7 have non-redundant function in vivo. Further insights into the specific functions of the JNK activators in cancer cells and in neurons will be of critical importance to validate MKK4 and MKK7 as promising drug targets.  相似文献   

11.
Saturated free fatty acid (FFA) is a major source of metabolic stress that activates the c-Jun NH(2)-terminal kinase (JNK). This FFA-stimulated JNK pathway is relevant to hallmarks of metabolic syndrome, including insulin resistance. Here we used gene ablation studies in mice to demonstrate a central role for mixed-lineage protein kinases (MLK) in this signaling pathway. Saturated FFA causes protein kinase C (PKC)-dependent activation of MLK3 that subsequently causes increased JNK activity by a mechanism that requires the MAP kinase kinases MKK4 and MKK7. Loss of PKC, MLK3, MKK4, or MKK7 expression prevents FFA-stimulated JNK activation. Together, these data establish a signaling pathway that mediates effects of metabolic stress on insulin resistance.  相似文献   

12.
The cellular response to genotoxic stress includes activation of protein kinase Cdelta (PKCdelta). The functional role of PKCdelta in the DNA damage response is unknown. The present studies demonstrate that PKCdelta is required in part for induction of the stress-activated protein kinase (SAPK/JNK) in cells treated with 1-beta-d-arabinofuranosylcytosine (araC) and other genotoxic agents. DNA damage-induced SAPK activation was attenuated by (i) treatment with rottlerin, (ii) expression of a kinase-inactive PKCdelta(K-R) mutant, and (iii) down-regulation of PKCdelta by small interfering RNA (siRNA). Coexpression studies demonstrate that PKCdelta activates SAPK by an MKK7-dependent, SEK1-independent mechanism. Previous work has shown that the nuclear Lyn tyrosine kinase activates the MEKK1 --> MKK7 --> SAPK pathway but not through a direct interaction with MEKK1. The present results extend those observations by demonstrating that Lyn activates PKCdelta, and in turn, MEKK1 is activated by a PKCdelta-dependent mechanism. These findings indicate that PKCdelta functions in the activation of SAPK through a Lyn --> PKCdelta --> MEKK1 --> MKK7 --> SAPK signaling cascade in response to DNA damage.  相似文献   

13.
Interleukin 1beta (IL-1beta) induces expression of the inducible nitric-oxide synthase (iNOS) with concomitant release of nitric oxide (NO) from glomerular mesangial cells. These events are preceded by activation of the c-Jun NH(2)-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38(MAPK). Our current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 SAPKbeta/JNK2 significantly reduces the iNOS protein expression and NO production induced by IL-1beta. Similarly, overexpression of the kinase-dead mutant form of p38alpha(MAPK) also inhibits IL-1beta-induced iNOS expression and NO production. In previous studies we demonstrated that IL-1beta can activate MKK4/SEK1, MKK3, and MKK6 in renal mesangial cells; therefore, we examined the role of these MAPK kinases in the modulation of iNOS induced by IL-1beta. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta-induced iNOS expression and NO production with inhibition of both SAPK/JNK and p38(MAPK) phosphorylation. Overexpression of the kinase-dead mutant form of MKK3 or MKK6 demonstrated that either of these two mutant kinase inhibited IL-1beta-induced p38(MAPK) (but not JNK/SAPK) phosphorylation and iNOS expression. Interestingly overexpression of wild type MKK3/6 was associated with phosphorylation of p38(MAPK); however, in the absence of IL-1beta, iNOS expression was not enhanced. This study suggests that the activation of both SAPK/JNK and p38alpha(MAPK) signaling cascades are necessary for the IL-1beta-induced expression of iNOS and production of NO in renal mesangial cells.  相似文献   

14.
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.  相似文献   

15.
Stress kinase MKK7: savior of cell cycle arrest and cellular senescence   总被引:2,自引:0,他引:2  
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum of cellular processes, including cell growth, differentiation, transformation, and apoptosis. We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couples stress signaling to G2/M cell cycle progression, CDC2 expression, and cellular senescence. We further explored other molecules involved in JNK pathway and found that both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK, have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNK-c-Jun pathway linking stress and developmental signals to cell proliferation, cell cycle progression, cellular senescence, and apoptosis including recent unpublished data from our lab.  相似文献   

16.
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum ofcellular processes, including cell growth, differentiation, transformation, and apoptosis.We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couplesstress signaling to G2/M cell cycle progression, CDC2 expression, and cellularsenescence. We further explored other molecules involved in JNK pathway and foundthat both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK,have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNKc-Jun pathway linking stress and developmental signals to cell proliferation, cell cycleprogression, cellular senescence, and apoptosis including recent unpublished data fromour lab.  相似文献   

17.
18.
19.
Angiogenesis, the process of new blood vessels formation, is a critical step for wound healing, tumour growth and metastasis, diabetic retinopathy, psoriasis, etc. The present study was designed to investigate whether c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for regulating basic fibroblastic growth factor (bFGF)-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Our results showed that bFGF-induced HUVECs proliferation, migration and tube formation with a concentration-dependent manner. Further results showed that bFGF induced the phosphorylation of JNK/SAPK at 15 min. Both JNK/SAPK inhibitor SP600125 and JNK/SAPK peptide inhibitor 420116 could inhibit bFGF-induced HUVECs proliferation, migration and tube formation, so did JNK/SAPK-specific siRNA. Moreover, when HUVECs were stimulated with bFGF, upstream signals of JNK/SAPK, SEK1/MKK4 and MKK7 were both activated at 2 min. In summary, our results indicate that JNK/SAPK signal pathway plays an important role in regulating bFGF-mediated angiogenesis in HUVECs, which may therefore be a new therapeutic approach for the treatment of angiogenesis-associated diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号