首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quaternary ammonium lipids 1b-d, with diether linkages between hydrocarbon chains and butane or hexane backbone, were synthesized for cationic liposome-mediated gene delivery. The synthetic strategy of using C-4 or C-6 synthon permits the achievement of the variation of the hydrophobic domain as well as changes of space between the quaternary ammonium head and the hydrophobic domain in the diether-linked cationic lipids.  相似文献   

2.
Series of lipids 1a-d and 2a,b, with carbamate linkages between hydrocarbon chains and ammonium or tertiary amine head, which were pH sensitive, were synthesized for liposome-mediated gene delivery. The variable length of carbon chains and quaternary ammonium or neutral tertiary amine heads allowed to find the structure-function relationship of how these factors affect cationic lipids on gene delivery performance.  相似文献   

3.
The new cholesterol-based cationic lipids B, C, and D with an ether linked spacer were synthesized by using aminopropyl chain extension with acrylonitrile. The cholesterol-based cationic lipid A with carbamoyl linkage were also synthesized in order to compare the difference in transfection efficiency of the two linkage types. To this end, GFP expression of these cationic lipids was confirmed respectively.  相似文献   

4.
A novel series of cationic amphiphiles based on dialkyl glutamides with cationic pyridinium head group were synthesized as potential gene delivery agents. Four cationic lipids with glutamide as linker and varying chain lengths were tested for their transfection efficiency in three cell lines. The DNA-lipid complexes were characterized for their ability to bind to DNA, protection from nuclease digestion, size, zeta-potential, and toxicity. All four lipids demonstrated efficient transfection in MCF-7, COS, and HeLa cells, and the reporter gene expression was much higher with DOPE as the helper lipid in the formulation when compared to cholesterol. Among these 14-carbon lipids, lipid 2 has shown the highest transfection efficiency, complete protection of DNA from nuclease digestion, and low toxicity. Interestingly, lipid 2 has also shown remarkable enhancement in transfection in the presence of serum.  相似文献   

5.
We have synthesized novel cationiclipids for gene delivery bearing an ester bond betweenthe lipid moiety and the polyamine head. We have foundthat an intramolecular rearrangement occurs duringpurification of one of the products. The rearrangementled to a cyclic lipopolyamine which was active for DNAgene transfer. The formation ofcyclization products depends on the spacer foundbetween the lipid and the polyamine. The introduction ofarginine in the linker position prevents the formation ofcyclic products. Linear as well as cyclicanalogues showed high-efficiency gene transfer whentested in vitro for luciferase gene expressionas compared to dioctadecylamidoglycyl spermineor lipofectamine and also in vivo in the Lewislung carcinoma model. The introduction of arginine in thelinker position promoted increased transfectionactivity, demonstrating that a diversity of linkers,such as short peptides or glycosides, can beintroduced into cationic lipids for targeted gene transfer.  相似文献   

6.
Summary We have synthesized novel cationic lipids for gene delivery bearing an ester bond between the lipid moiety and the polyamine head. We have found that an intramolecular rearrangement occurs during purification of one of the products. The rearrangement led to a cyclic lipopolyamine which was active for DNA gene transfer. The formation of cyclization products depends on the spacer found between the lipid and the polyamine. The introduction of arginine in the linker position prevents the formation of cyclic products. Linear as well as cyclic analogues showed high-efficiency gene transfer when tested in vitro for luciferase gene expression as compared to dioctadecylamidoglycyl spermine or lipofectamine and also in vivo in the Lewis lung carcinoma model. The introduction of arginine in the linker position promoted increased transfection activity, demonstrating that a diversity of linkers, such as short peptides or glycosides, can be introduced into cationic lipids for targeted gene transfer.  相似文献   

7.
8.
We have introduced a convenient synthesis method for carbamate-linked cationic lipids. Two cationic lipids N-[1-(2,3-didodecylcarbamoyloxy)propyl]-N,N,N-trimethylammonium iodide (DDCTMA) and N-[1-(2,3-didodecyl carbamoyloxy)propyl]-N-ethyl-N,N-dimethylammonium iodide (DDCEDMA), with identical length of hydrocarbon chains, alternative quaternary ammonium heads, carbamate linkages between hydrocarbon chains and quaternary ammonium heads, were synthesized for liposome-mediated gene delivery. Liposomes composed of DDCEDMA and DOPE in 1:1 ratio exhibited a lower zeta potential as compared to those made of pure DDCEDMA alone, which influences their DNA-binding ability. pGFP-N2 plasmid was transferred by cationic liposomes formed from the above cationic lipids into Hela and Hep-2 cells, and the transfection efficiency of some of cationic liposomes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and DOTAP. Combined with the results of the agarose gel electrophoresis and transfection experiment, the DNA-binding ability of cationic lipids was too strong to release DNA from complex in the transfection, which could lead to relative low transfection efficiency and high cytotoxicity.  相似文献   

9.
A new panel of steroidal cationic lipids has been synthesized for gene delivery. Using commercially available vitamin D2 (calciferol) or vitamin D3 (cholecalciferol) as hydrophobic motifs and a variety of cationic head groups as binding sites for negatively charged phosphate groups in DNA, we demonstrated that the transfection activity of the synthetic vitamin D-based cationic lipids 1d, 2d formulated with dioleoylphosphatidylethanolamine (DOPE) as a co-lipid is comparable to that of 3-(-[N-N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol). These synthetic lipids are effective in transfecting a variety of cell lines. These results suggest that vitamin D-based cationic lipids are useful transfection reagents for in vitro gene transfer studies.  相似文献   

10.
Series of cationic lipids 1a-p, with variable length of hydrocarbon chains, alternative quaternary ammonium heads, carbamate linkages between hydrocarbon chains and quaternary ammonium heads, as well as different anion combined with them, were synthesized for liposome-mediated gene delivery. Two plasmid DNAs, pGL3-control and pGFP-N2, were transferred by cationic liposomes formed from the above cationic lipids into five mammalian cell lines, and the transfection efficiency of some of the cationic liposomes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and Sofast.  相似文献   

11.
A novel uridine-based nucleo-lipid, DOTAU (N-[5'-(2',3'-dioleoyl)uridine]-N',N',N'-trimethylammonium tosylate) was prepared by using a convenient four-step synthetic pathway. From the preliminary physicochemical studies (quasielastic light scattering and light microscopy), this amphiphilic structure forms supramolecular organizations in aqueous solution. In addition, in the presence of nucleic acids, transmission electronic microscopy experiments (TEM) and small angle X-ray scattering (SAXS) reveal the formation of multilamellar structures similar to lipoplexes (cationic liposome-DNA complexes) with cationic lipids. The formation of a complex was confirmed by fluorescence spectroscopic assays involving ethidium bromide. Transfection assays of mammalian cell lines (HeLa and MCF-7) indicate that DOTAU can transfect efficiently an expression vector (pEGFP) encoding GFP. Proliferation assays realized on these cell lines show that DOTAU does not inhibit cell proliferation and is less toxic than the commercial Lipofectamine 2000.  相似文献   

12.
Gene therapy provides powerful new approaches to curing a large variety of diseases, which are being explored in ongoing worldwide clinical trials. To overcome the limitations of viral gene delivery systems, synthetic nonviral vectors such as cationic liposomes (CLs) are desirable. However, improvements of their efficiency at reduced toxicity and a better understanding of their mechanism of action are required. We present the efficient synthesis of a series of degradable multivalent cationic lipids (CMVLn, n=2 to 5) containing a disulfide bond spacer between headgroup and lipophilic tails. This spacer is designed to be cleaved in the reducing milieu of the cytoplasm and thus decrease lipid toxicity. Small angle X-ray scattering demonstrates that the initially formed lamellar phase of CMVLn-DNA complexes completely disappears when reducing agents such as DTT or the biologically relevant reducing peptide glutathione are added to mimic the intracellular milieu. The CMVLs (n=3 to 5) exhibit reduced cytotoxicity and transfect mammalian cells with efficiencies comparable to those of highly efficient non-degradable analogs and benchmark commercial reagents such as Lipofectamine 2000. Thus, our results demonstrate that degradable disulfide spacers may be used to reduce the cytotoxicity of synthetic nonviral gene delivery carriers without compromising their transfection efficiency.  相似文献   

13.
14.
15.
Magnetic nanoparticles for gene and drug delivery   总被引:1,自引:0,他引:1  
Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting.  相似文献   

16.
Lin S  Du F  Wang Y  Ji S  Liang D  Yu L  Li Z 《Biomacromolecules》2008,9(1):109-115
Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.  相似文献   

17.
Spatial control over the distribution and the aggregation of arginine-glycine-aspartate (RGD) peptides at the nanoscale significantly affects cell responses. For example, nanoscale clustering of RGD peptides can induce integrins to cluster, thus triggering complete cell signaling. Dendrimers have a unique, highly branched, nearly spherical and symmetrical structure with low polydispersity, nanoscale size, and high functionality. Therefore, dendrimers are a class of ideal scaffold for construction of nanoscale dendritic RGD clusters in which RGD loading degree and cluster size can be finely adjusted. This new type of nanoscale dendritic RGD cluster will aid us to better understand the impact of spatial arrangement of RGD on cellular responses and to engineer RGD to trigger more favorable cellular responses. In this study, nanoscale dendritic RGD clusters were synthesized based on Starburst anionic G3.5 and cationic G4.0 polyamidoamine (PAMAM) dendrimers. The multiple terminal functional groups on the outermost layer of the dendrimer were coupled with RGD tripeptides. Biofunctionalized dendrimer structures were found to be highly dependent on the generation and the extent of peptide modification (ie, number of peptides per PAMAM dendrimer). Fluorescein isothiocyanate (FITC)-conjugated PAMAM dendrimers were utilized to monitor cellular internalization of dendrimers by adherent fibroblasts. Anionic G3.5-based dendritic RGD clusters have been shown to have no negative effect on fibroblast viability and a concentration-dependent effect on lowering cell adhesion on tissue culture polystyrene (TCPS) as that of free RGD. A similar concentration-dependent effect in cell viability and adhesion was also observed for cationic G4.0-based dendritic RGD clusters at lower but not at high concentrations. The results imply that the synthesized nanoscale dendritic RGD clusters have great potential for tissue engineering and drug delivery applications.  相似文献   

18.
Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems.  相似文献   

19.
Various bis(2-hydroxy-3-chloropropyl)alkylamines were synthesized by coupling primary amine with epichlorohydrin and utilized as a monomer to react with ethylenediamine (EDA), N,N'-dimethylethylenediamine (DMEDA), or tetramethylethylenediamine (TMEDA) to generate a series of lipopolyhydroxylalkyleneamines. The number- and weight-average molecular weight (Mn and Mw) and polydispersity index (Mw/Mn) of the lipopolyhydroxylalkyleneamines were dependent on reactant solvent and reaction temperature. The compounds with EDA as backbone have better transfection activity and lower toxicity than those with DMEDA and TMEDA as backbone.  相似文献   

20.
Antibodies, because of their inherent specificity, seem ideal agents for recognizing and destroying malignant cells. When monoclonal antibodies became available, they appeared ideal candidates for use as anti-cancer drugs. However, monoclonal antibodies as currently constituted still have certain inherent limitations. Transfectomas provide an approach to overcoming some of these limitations. Genetically engineered antibodies can be expressed following gene transfection into lymphoid cells. One of the major advantages of expressing genetically engineered antibodies, is that one is not limited to using antibodies as they occur in nature. In particular, non-immunoglobulin sequences can be joined to antibody sequences creating multi-functional chimeric antibodies. Creation of a family of multi-functional chimeric antibodies with a growth factor joined to a combining specificity may be useful in targeting therapy to malignant cells and delivering drugs into specific locales in the human body. Presence of the growth factor may facilitate transcytosis of chimeric antibody across the blood-brain barrier using growth factor receptors. These novel chimeric antibodies constitute a new family of immunotherapeutic molecules for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号