首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism by which the cytolysin-mediated translocation (CMT) pathway of the Gram-positive pathogen Streptococcus pyogenes injects effector proteins into the cytosol of an infected host cell via the pore-forming protein streptolysin O is unknown. Key questions include whether the pathway can discriminate between different substrates for translocation, and whether the effector protein plays an active or passive role in the translocation process. Here we show that CMT can discriminate between a known effector of the pathway, the S. pyogenes NAD(+) glycohydrolase (SPN), and a second secreted protein, the mitogenic factor (MF), routing the former into the host cell cytosol and the latter into the extracellular milieu. Residues within the amino-terminal 190 residues of SPN were essential for discrimination, as deletions within this domain produced proteins that retained full enzymatic activity, but were completely uncoupled from the translocation pathway. The enzymatic domain itself played a pivotal role in the discrimination as deletions within this domain also produced translocation incompetent proteins and the conversion of MF to a translocation-competent form required fusion with both SPN domains in a contiguous orientation. These data establish that CMT is discriminatory, and that SPN is a multidomain protein that plays an active role in its translocation.  相似文献   

2.
3.
4.
The human pathogen Streptococcus pyogenes produces diverse pili depending on the serotype. We investigated the assembly mechanism of FCT type 1 pili in a serotype M6 strain. The pili were found to be assembled from two precursor proteins, the backbone protein T6 and ancillary protein FctX, and anchored to the cell wall in a manner that requires both a housekeeping sortase enzyme (SrtA) and pilus-associated sortase enzyme (SrtB). SrtB is primarily required for efficient formation of the T6 and FctX complex and subsequent polymerization of T6, whereas proper anchoring of the pili to the cell wall is mainly mediated by SrtA. Because motifs essential for polymerization of pilus backbone proteins in other Gram-positive bacteria are not present in T6, we sought to identify the functional residues involved in this process. Our results showed that T6 encompasses the novel VAKS pilin motif conserved in streptococcal T6 homologues and that the lysine residue (Lys-175) within the motif and cell wall sorting signal of T6 are prerequisites for isopeptide linkage of T6 molecules. Because Lys-175 and the cell wall sorting signal of FctX are indispensable for substantial incorporation of FctX into the T6 pilus shaft, FctX is suggested to be located at the pilus tip, which was also implied by immunogold electron microscopy findings. Thus, the elaborate assembly of FCT type 1 pili is potentially organized by sortase-mediated cross-linking between sorting signals and the amino group of Lys-175 positioned in the VAKS motif of T6, thereby displaying T6 and FctX in a temporospatial manner.  相似文献   

5.
6.
The genome of Streptococcus pyogenes, an important human pathogen, encodes homologs of the principal bacterial heat shock proteins DnaK and GroES, -EL, as well as HrcA, a negative regulator of dnaK and groESL expression in other Gram-positive bacteria. Using nuclease protection assays to measure dnaK/groESL mRNA abundance and a "non-polar" insertion to disrupt hrcA, we demonstrate that heat shock triggers a 4- to 8-fold increase in dnaK and groESL-specific mRNAs within 5 min of the temperature shift and that HrcA is a negative regulator of S. pyogenes dnaK/groESL mRNA abundance in unstressed S. pyogenes. Although the loss of HrcA elevated dnaK and groESL mRNA levels under non-heat shock conditions, the relative abundance of these RNAs increased further in heat shocked S. pyogenes, suggesting an additional element contributing to their synthesis or stability.  相似文献   

7.
8.
9.
Abstract Several reports have shown that Streptococcus pyogenes strains which produce opacity factor (OF+) have diverged significantly from OF serotypes. This study questions whether several surface proteins of an OF+ culture are regulated by the positive regulatory protein VirR, in a manner similar to OF~ strains. Interruption of the virR region of an OF+ S. pyogenes (strain CS101, M type 49) was performed using a temperature-sensitive plasmid containing a fragment of virR . Interruption of the virR region produced cultures with (indétectable amounts of M49 and ScpA proteins, and reduced the yield of FcRA protein. In addition, mutants had a significant reduction in detectable opacity factor. These results suggest that virR functions as a positive regulator of a variety of surface proteins in OF+ strains.  相似文献   

10.
The susceptibility of 224 Streptococcus pyogenes isolates obtained from children in Japan from 1981 to 1997 to treatment with erythromycin was determined by the agar dilution method. A total of 17 isolates belonging to serotype M12T12 were resistant (MICs>1 microg/ml). Fourteen of the 17 resistant strains obtained from 1982 to 1985 harbored ermB and showed an identical pulsed-field gel electrophoresis pattern, indicating the spread of a single clone. Two ermTR-containing isolates were obtained in 1983. mefA gene was found in a strain obtained in 1994 in the present study, although this gene is predominantly associated with recent erythromycin resistance among S. pyogenes strains in many countries.  相似文献   

11.
Intuitively, paralogues created by gene duplication should retain related functions. However, a study of the two lactose metabolic operons of Streptococcus pyogenes, reported in this issue of Molecular Microbiology, indicates that paralogues might evolve very different functions, in this case changing from a metabolic enzyme to a regulator of virulence. Divergence of paralogues could be a newly recognized theme in the metamorphosis of a bacteria from innocuous to pathogenic.  相似文献   

12.
Very little is known about the biological functions of pili that have recently been found to be expressed by important Gram-positive pathogens such as Corynebacterium diphtheriae, Streptococcus agalacticae, S. pneumoniae and S. pyogenes. Using various ex vivo tissue and cellular models, here we show that pili mediate adhesion of serotype M1 S. pyogenes strain SF370 to both human tonsil epithelium and primary human keratinocytes, which represent the two main sites of infection by this human-specific pathogen. Mutants lacking minor pilus subunits retained the ability to express cell-surface pili, but these were functionally defective. In contrast to above, pili were not required for S. pyogenes adhesion to either immortalized HEp-2 or A549 cells, highlighting an important limitation of these extensively used adhesion/invasion models. Adhering bacteria were internalized very effectively by both HEp-2 and A549 cells, but not by tonsil epithelium or primary keratinocytes. While pili acted as the primary adhesin, the surface M1 protein clearly enhanced adhesion to tonsil, but surprisingly, had the opposite effect on adhesion to keratinocytes. These studies provide clear evidence that S. pyogenes pili display an adhesive specificity for clinically relevant human tissues and are likely to play a critical role in the initial stages of infection.  相似文献   

13.
The surface-located M protein functions to protect Streptococcus pyogenes (the group A streptococcus) from phagocytosis by polymorphonuclear leukocytes. It has been suggested that this protection results from the ability of M protein to bind factor H, a serum protein that can inhibit the activation of complement. Among different serological variants of M protein, the C-repeat domain is highly conserved and is exposed on the bacterial surface. This domain has been implicated in binding to complement factor H and in M-protein-mediated adherence of streptococci to human keratinocytes in the cutaneous epithelium. In this study, we constructed an S. pyogenes mutant strain which expresses an M6 protein from which the entire C-repeat domain was deleted. As predicted, this mutant did not adhere well to human keratinocytes and was unable to bind to factor H. Unexpectedly, the mutant was able to survive and multiply in human blood. Therefore, while the binding of factor H and the facilitation of adherence to keratinocytes appear to involve recognition of the C-repeat domain, a region of the M-protein molecule distinct from the C-repeat domain confers upon S. pyogenes its ability to resist phagocytosis.  相似文献   

14.
We have amplified genomic sequences (emm) that may encode M protein from strains of Streptococcus pyogenes using the polymerase chain reaction (PCR). Genomic DNA from 22 isolates representing 14 M serotypes was selected for the study. Primers which corresponded to the observed N-terminal signal sequence and the variable C-terminal sequences of emm6, emm49 and ennX were used. PCR products using emm6 and emm49 oligonucleotides were classified into two mutually exclusive groups which correspond to the presence or absence of serum opacity factor. These findings support the concept of limited heterogeneity in the C-terminal sequences of the M protein.  相似文献   

15.
A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in Rsolanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of Rsolanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for Rsolanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of Rsolanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum.  相似文献   

16.
Streptococcus pyogenes, the aetiological agent of both respiratory and skin infections, produces numerous exotoxins to establish infection. This report identifies a new exotoxin produced by this organism, termed SpyA, for S. pyogenesADP-ribosylating toxin. SpyA, MW 24.9, has amino acid identity with the ADP-riboslytransferases (ADPRTs) Staphylococcus aureus EDIN and Clostridium botulinum C3. Recombinant SpyA was able to hydrolyse beta-NAD(+), and this activity was dependent on a glutamate at position 187. SpyA has a putative biglutamate active site, and similar to most biglutamate ADPRTs, was able to ADP-ribosylate poly-l-arginine. SpyA modified numerous proteins in both CHO and HeLa cell lysates. Two-dimesional gel analysis and MALDI-TOF MS analysis of modified proteins indicated that vimentin, tropomyosin and actin, all cytoskeletal proteins, are targets. Expression of spyA in HeLa cells resulted in loss of actin microfilaments. We hypothesize that SpyA is produced by S. pyogenes to disrupt cytoskeletal structures and promote colonization of the host.  相似文献   

17.
18.
19.
20.

Background

The periodontal pathogen Porphyromonas gingivalis is an obligate anaerobe that requires heme for growth. To understand its heme acquisition mechanism, we focused on a hemin-binding protein (HBP35 protein), possessing one thioredoxin-like motif and a conserved C-terminal domain, which are proposed to be involved in redox regulation and cell surface attachment, respectively.

Results

We observed that the hbp35 gene was transcribed as a 1.1-kb mRNA with subsequent translation resulting in three proteins with molecular masses of 40, 29 and 27 kDa in the cytoplasm, and one modified form of the 40-kDa protein on the cell surface. A recombinant 40-kDa HBP35 exhibited thioredoxin activity in vitro and mutation of the two putative active site cysteine residues abolished this activity. Both recombinant 40- and 27-kDa proteins had the ability to bind hemin, and growth of an hbp35 deletion mutant was substantially retarded under hemin-depleted conditions compared with growth of the wild type under the same conditions.

Conclusion

P. gingivalis HBP35 exhibits thioredoxin and hemin-binding activities and is essential for growth in hemin-depleted conditions suggesting that the protein plays a significant role in hemin acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号