首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Arctic sea ice is inhabited by several amphipod species. Abundance, biomass and small-scale distribution of these cryopelagic (=ice associated) amphipods were investigated near Franz Josef Land in summer 1994. The mean abundance of all species was 420 ind./m2; the mean biomass was 10.61 g ww/m2. Gammarus wilkitzkii was the dominant species, whereas Apherusa glacialis, Onisimus nanseni and O. glacialis were only scarcely found. Amphipods were concentrated at the edges of ice floes and were less frequent in areas further away under the ice. The relationship between the distribution and ecological/physiological requirements of cryopelagic amphipods, as well as the small-scale morphology of Arctic sea ice, are discussed. Received: 14 January 1998 / Accepted 14 April 1998  相似文献   

2.
We examined the sub-ice algal community in the Chukchi Sea during June 1998 using a remotely operated vehicle (ROV). Ice algae were observed on the under-ice surface at all ten stations (from 70°29′N to 72°26′N; 162°00′W to 153°56′W) and varied in abundance and distribution from small aggregations limited to depressions in the ice to nets, curtains and strands of Melosira. There was no relationship between percent cover of sub-ice algae and physical factors at the kilometer scale, but at the scale of individual ice floes the percent cover of sub-ice algae was positively correlated with distance from the floe edge and negatively correlated with snow depth. A significant positive relationship between the concentration of sediment pigments and percent cover of sub-ice could indicate a coupling between ice algal and benthic systems. Pieces of ice algae that appeared to be Melosira were observed on the seafloor to a depth of over 100 m and cells or spores of obligate ice algal taxa were collected from sediments from 44-m to 1,000-m deep. The large biomass of sub-ice algae observed at many stations in the Chukchi Sea and the presence of ice algae on the seafloor indicates that the distribution and abundance of sub-ice algae needs to be understood if we are to evaluate the role of ice algae in the Arctic marine ecosystem.  相似文献   

3.
Arctic ice amphipods are part of the sympagic macrofauna in the Marginal Ice Zone of the northern Barents Sea and represent an important link from lower to higher trophic levels in some Arctic marine food chains. The species diversity in this area (1995/1996) consisted of four species: Gammarus wilkitzkii, Apherusa glacialis, Onisimus nanseni and Onisimus glacialis. The larger ice amphipod, G. wilkitzkii, was the most abundant with the highest biomass (>90%), whereas A. glacialis was abundant, but contributed little to the total biomass (<4%). The other two species were found only in small numbers. Both abundance and biomass of ice amphipods decreased along a latitudinal gradient from north to south across the Marginal Ice Zone. Their distribution was also related to the under-ice topography with regard to mesoscale structures (edge, flat area, dome and ridge). Overall, the abundance and biomass on ridges were much higher in comparison to other mesoscale structures, although edges also showed high abundance, but low biomass. The large G. wilkitzkii was consistently abundant on ridges. The small A. glacialis was predominately associated with edges, but also showed high numbers in dome-shaped areas. The Onisimus species were present in low numbers at all structures, and their biomass contributed <10% on any one structure. The reasons for different distribution patterns of the dominant amphipod species under Arctic sea ice are probably related to different requirements of the species, especially for food, shelter and physiological conditions. Accepted: 27 November 1999  相似文献   

4.
Sargassum muticum was first observed in Scandinavia in Limfjorden (Denmark) in 1984, where it is now the most abundant and conspicuous macroalga. Despite the ecological importance of Sargassum, few studies have described seasonal patterns within Scandinavian Sargassum beds. We quantified the dynamics of macroalgae among years and seasons along a depth transect through a typical Sargassum bed in Limfjorden. The annual investigations (summer transects 1989–1999) showed a gradual increase in the dominance of Sargassum, especially at the 2–4-m depth interval. Significant seasonal dynamics in macroalgal abundance and assemblage structure were observed in this depth interval; the mean cover of Sargassum varied from ca. 5% (autumn and winter) to 25% (mid-summer). In comparison, encrusting algae had high and relatively stable covers throughout the year (ca. 20%). Other perennial macroalgae had low mean covers (<2%) characterized by a few patches of higher abundances. Except from a spring bloom, filamentous algae had low covers throughout the year. Within this relatively uniform bed, Sargassum abundance was positively related to boulders >10 cm in diameter and species richness was negatively correlated to depth and stones <10 cm in diameter, and non-correlated to other algal form-groups or grazer densities. Thus, in Limfjorden, the distribution of Sargassum is determined by large- (>6 m) and small-scale (<1 m) depth differences where low light limits Sargassum at depth, physical disturbance and sediment stress limits Sargasum in shallow waters, and the presence of stable boulder substratum facilitate Sargassum. Competition for space from other macroalgae and herbivory are probably of minor importance.  相似文献   

5.
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic–pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind. m−3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5–2.3 mg Chl-a m−3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind. m−2) and wet biomass (<0.2 g m−2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.  相似文献   

6.
 The zooplankton of the under-shelf-ice ecosystem at White Island (78°10′ S, 167°30′ E), McMurdo Sound, Antarctica was investigated during December 1976 and January 1977. The water column was sampled through a hole in the McMurdo Ice Shelf over a water depth of 67 m. Seawater temperatures under the ice shelf ranged from −1.91 to 1.96°C. Dissolved oxygen levels ranged from 5.0–6.05 ml l-1 in early December to 4.65–4.8 ml l-1 in late January. Current speeds of up to 0.13 m s-1 were recorded at a depth of 50 m and a predominantly northward flow was detected. Light levels under the shelf ice were low with less than 1% of the incident light being transmitted to a depth of 3 m. No chlorophyll a was detected within the water column throughout the investigation. Mean zooplankton biomass values in the water column ranged from 12 to 447 mg wet weight m-3 and were similar to values recorded elsewhere from Antarctic inshore waters, but were very much higher than those recorded from under seasonal sea ice in McMurdo Sound. Thirty-two zooplankton species were recorded including 1 ostracod, 21 copepods (10 calanoids, 3 cyclopoids and 8 harpacticoids), 4 amphipods, 2 euphausiids, a chaetognath and 3 pteropods. Larvae of polychaetes and fish were found on some occasions. The species composition in general was similar to that recorded from McMurdo Sound and other Antarctic inshore localities. Among the Copepoda, however, there were a number of species, especially among the Harpacticoidea, that have not been found previously in McMurdo Sound and the Ross Sea, but that are known to be associated with ice in other localities in Antarctica. Two recently described species are known only from White Island. They were present in the water column but were most abundant in the surface water of the tide crack where they were the most abundant zooplankters. The tide crack, which probably is an extension of the under-ice habitat, is apparently a significant nursery area for amphipods and copepod species. Received: 23 November 1994/Accepted 7 May 1995  相似文献   

7.
Patterns of abundance of epifaunal crustaceans were compared between two common brown algae in intertidal rock pools on a shore near Sydney, New South Wales, Australia. Amphipods were significantly more abundant on Sargassum globulariaefolium (which was most common low on the shore) than on Hormosira banksii (more common at mid-shore levels). Experiments tested the hypotheses that height on the shore and structural complexity of the algae were the main factors influencing patterns of abundance of amphipods. Reciprocal transplants using defaunated plants and similar experiments using artificial plants allowed simultaneous tests of these hypotheses. The abundance of a common intertidal amphipod, Sunampithoe graxon was significantly smaller on Sargassum transferred from low to mid-tidal level of the shore than on any other treatments, indicating that height on the shore affects numbers of this species. There were no Sunampithoe on Hormosira even when transplanted to low shore areas, indicating that other factors, apart from the height on the shore, are also important for this amphipod. Another common amphipod, Hyale maroubrae was generally found in greatest abundances on Hormosira transplanted from mid- to low shore and on Sargassum low on the shore, again indicating the importance of height on the shore. There was no difference in abundance of amphipods on ‘complex’ and ‘simple’ artificial plants indicating that structural complexity (as defined in this study) did not influence these amphipods.  相似文献   

8.
The sympagic (=ice-associated) amphipod Gammarus wilkitzkii usually lives attached to the underside of Arctic sea ice. During an expedition to the Greenland Sea in May/June 1997, high numbers of this species were found in pelagic Rectangular Midwater Trawl catches (0–500 m water depth) in an ice-free area, 35–42 km away from the ice edge. The amphipods seemed to have maintained position in the water column for at least 4 days. Mean biomass data (length: 2.9 cm, organic content: 73% dry mass), gut fullness (>50% in 85% of specimens) and sex ratio (females:males = 1:1.5) of these amphipods were very similar to values for under-ice populations. Due to their relatively high body density (mean: 1.134 g cm−3), the energy demand for swimming was assumed to be high. Measurements of oxygen consumption of swimming and resting amphipods (8.8 and 4.0 J g wet mass−1 day−1, respectively) suggested that, from an energetic point of view, G. wilkitzkii would maintain position in an ice-free water column for the time period. Accepted: 11 January 1999  相似文献   

9.
Sympagic macro-fauna from multiyear sea-ice near Svalbard   总被引:6,自引:6,他引:0  
Summary The object of the present investigation was to map the distribution and abundance of sympagic fauna (= ice fauna) (>350 m) within the perennial sea ice zone near Svalbard and to study relations between the sympagic fauna and the age and history of its ice substrate. The sampling took place in July/August 1986 and September 1988 using SCUBA-operated sampling gear (suction samplers, plankton nets with especially designed frames for sampling at the sea-ice/seawater interface, and underwater cameras). The amphipods Apherusa glacialis, Onisimus sp., and Gammarus wilkitzkii were the most conspicuous sympagic species both years. Scattered individuals of the amphipods Gammaracanthus loricatus, Weyprechtia penguis and the polychaete Harmathoinae indet. were also recorded. A. glacialis was the most numerous and contributed near 65% of the collected specimens in both years, with a maximum density exceeding 2000 individuals/m2. However, G. wilkitzkii was on average larger, and contributed most to the biomass (1986: 80%; 1988: 77%). The average biomass of sympagic fauna in 1986 and 1988 was estimated to be 4.7 g/m2 and 8.3 g/m2 respectively. Biomass values reported here are ten to hundred times higher than what is found within the seasonal sea ice zone. Autochthonous sympagic species, like A. glacialis, Onisimus sp. and G. wilkitzkii, have a permanent association with ice. The seasonal sea ice zone will thus have to be recolonized every year resulting in lower densities compared to multiyear ice. It is suggested that the speed of the ice leaving the Polar Basin through the Fram Strait is too high for the sympagic fauna to remain its position in the sea ice zone. The result is an annual loss in the order of 7*105 tons of sympagic fauna from the perennial sea ice zone.  相似文献   

10.
Macrozoobenthic soft-sediment communities of central Arctic Kongsfjorden inhabiting six depth zones between 5 and 30 m were sampled using SCUBA-diving during June–August 2003 and analysed comparatively. About 63 taxa were found, nine of which had not been reported for Kongsfjorden and four for Svalbard. Suspension feeding or surface and sub-surface detritivorous polychaetes and deposit-feeding amphipods were dominant. Only 11 of the 63 taxa (45 species and additional 18 families not further identified) inhabited the complete depth range. Biomass ranged from 3.5 to 25.0 g ash free dry mass m−2 and mean Shannon diversity (Log e) was 2.06. Similarity clustering from abundance and biomass data showed a significant difference between the shallow station (5 m) and the rest. The latter formed two sub-groups (10–20 and 25–30 m). Depth is irrevocably correlated with ice-scouring. Thus the differences in diversity together with the predicted iceberg scour intensity support the ‘intermediate disturbance hypothesis’ indicating that habitats impacted by moderate iceberg scouring enable higher diversity. In contrast, biotopes frequently affected only host pioneer communities, while mature, less diverse assemblages dominate depths of low impact.  相似文献   

11.
The amphipod species Gammarus wilkitzkii, Apherusa glacialis, Onisimus nanseni and O. glacialis live permanently associated with the Arctic sea ice. Qualitative and semi-quantitative investigations of gut contents and faeces showed that all four species use detritus as the main food source. Detrital lumps from the underside of sea ice had the same item composition as amphipod gut contents and faeces. Crustacean remains and ice algae were additional food items, but overall they were quantitatively less important. All species are omnivorous; however, differences in gut contents, behavioural observations and functional–morphological studies of the mandibles suggest a differentiation within this feeding strategy. G. wilkitzkii is a detritivorous-carnivorous-necrophagous-suspension-feeding species and shows the most complex feeding strategy. O. nanseni and O. glacialis are predominantly detritivorous-necrophagous, whereas A. glacialis is characterised as a more herbivorous-detritivorous species. By using a variety of the available food sources under Arctic sea ice, the amphipods are well adapted to the under-ice habitat and are less influenced by temporal and spatial variations. Furthermore, the wide food spectrum of all four species reduces the intra- and interspecific competition in a habitat where certain food sources are limited or only seasonally available. Accepted: 30 June 2000  相似文献   

12.
The vertical distribution of bacterial abundance and biomass was investigated in relation to algal biomass in ice cores taken from drifting ice floes in two Arctic shelf areas: the Barents Sea and the Laptev Sea. Bacteria were not homogeneously distributed throughout the cores but occurred in dense layers. Different types of distribution patterns were found: either a single maximum occurred inside or at the bottom of the ice floe or maxima were found in different parts of the floes. Bacterial concentrations ranged from 0.4 to 36.7 · 105 cells ml−1. The size spectra of sea-ice bacteria were determined by image analysis. Cell sizes showed considerable variation between the ice floes. In multi-year sea ice, the largest bacteria were observed in the area of an internal chlorophyll a maximum. No specific vertical distribution patterns were found in first-year ice floes. Bacterial biomass for the ice cores ranged from 19.2 to 79.2 mg C m−2, and the ratio of bacterial:ice algal biomass ranged from 0.43 to 10.42. A comparison with data collected from fast ice revealed large differences in terms of cell size, abundance and biomass. Received: 7 September 1995 / Accepted: 10 September 1996  相似文献   

13.
We examined the species composition of red king crab (Paralithodes camtschaticus) fouling communities in Dolgaya Bay, a small fjord of the Barents Sea, in August 2005 and 2006. In total, there were 13 species observed on 301 crabs collected from water depths of 5–90 m. Barnacles (Balanus crenatus; prevalence 42.9%) and blue mussels (Mytilus edulis; 11.6%) were the most common epibionts, while amphipods (Ischyrocerus commensalis) were the most common symbionts (28.6%). Infestation rates in Dolgaya Bay were different from those in an “open” area of the Barents Sea (Dalnezelenetskaya Bay), probably due to differences in hydrodynamic conditions. Differences in infestation prevalence and intensity were detected neither between male and female crabs nor between crabs collected at 5–35 m versus 90 m depths. Prevalence of common fouling species increased with host size. Amphipods I. commensalis colonized the carapace and limbs in Dolgaya Bay less frequently than in Dalnezelenetskaya Bay, probably due to interspecific competition with barnacles occupying the dorsal parts of the host. Juvenile barnacles and mussels dominated the fouling communities on the crabs. The age of barnacles did not exceed 2–4 months. However, the presence of 4-year-old mussels suggests that these older mollusks have been directly transferred from mussel beds to the hosts. Our results indicate that colonization by epibionts and symbionts is generally not disadvantageous for the crab hosts, except for some possible negative impacts of amphipods occupying the gills.  相似文献   

14.
Quantitative surveys of sessile benthos and fish populations associated with reef habitats across a 15–50 m depth gradient were performed by direct diver observations using rebreathers at Isla Desecheo, Puerto Rico. Statistically significant differences between depths were found for total live coral, total coral species, total benthic algae, total sponges and abiotic cover. Live coral cover was higher at the mid-shelf (20 m) and shelf-edge (25 m) stations, whereas benthic algae and sponges were the dominant sessile-benthic assemblage at mesophotic stations below 25 m. Marked shifts in the community structure of corals and benthic algae were observed across the depth gradient. A total of 119 diurnal, non-cryptic fish species were observed across the depth gradient, including 80 species distributed among 7,841 individuals counted within belt-transects. Fish species richness was positively correlated with live coral cover. However, the relationship between total fish abundance and live coral was weak. Abundance of several numerically dominant fish species varied independently from live coral cover and appeared to be more influenced by depth and/or habitat type. Statistically significant differences in the rank order of abundance of fish species at euphotic vs mesophotic stations were detected. A small assemblage of reef fishes that included the cherubfish, Centropyge argi, sunshine chromis, Chromis insolata, greenblotch parrotfish, Sparisoma atomarium, yellowcheek wrasse, Halichoeres cyanocephalus, sargassum triggerfish, Xanthichthys ringens, and the longsnout butterflyfish, Chaetodon aculeatus was most abundant or only present from stations deeper than 30 m, and thus appear to be indicator species of mesophotic habitats.  相似文献   

15.
Phytoplankton samples were collected from three mesotrophic lakes: Piaseczno, Rogóźno and Krasne during winter seasons (from January to March). The samples were analyzed for species analysis and abundance of planktonic algae in relation to different depths of water column (0–7 m). Selected water physical-chemical parameters were also measured. Abundance of phytoplankton depended strongly on the thickness of snow and ice cover or mixing conditions. The maximal phytoplankton total number reached about 5 × 106 ind. L−1 beneath the clear ice in the Krasne Lake, minimal numbers were recorded under the thick snow and ice layers in the Piaseczno Lake (2 × 103 ind. L−1). The winter phytoplankton communities were dominated by flagellates principally cryptomonads (Cryptomonas spp. Rhodomonas minuta), euglenophytes (Trachelomonas volvocina, T. volvocinopsis), dinoflagellates (Peridinium bipes, Gymnodinium helveticum) and chrysophytes (Mallomonas elongata, M. akrokomos, Dinobryon sociale) or non-motile small species of blue-green algae (e.g. Rhabdoderma lineare, Limnothrix redekei), diatoms (Stephanodiscus spp., Asterionella formosa), and green algae (e.g. Scenedesmus spp., Monoraphidium spp.). Phytoplankton abundance and structure showed differentiation during the winter season and along the water column as well.  相似文献   

16.
The composition, abundance and vertical distribution of chaetognaths were analysed along a transect in the Weddell Sea during late spring. Three species were identified: Eukrohnia hamata (90.8%), Sagitta marri (6.4%) and S. gazellae (2.8%). Only juvenile stages were collected in the samples, a result related both to the type of sampling gear employed (mesh size: 100 μm) and the species' life-cycles. The vertical distributions showed that the juvenile stages of these species tended to aggregate at considerable depth (1000–500 m). It is postulated that this pattern may be related to the life-cycles of these species in association with seasonal Antarctic conditions, similar to the pattern postulated for krill and other polar crustaceans. Accepted: 10 July 2000  相似文献   

17.
The diving behaviour of Adélie penguins (Pygoscelis adeliae) was studied with time-depth recorders at Dumont D'Urville, Antarctica, during the breeding seasons in 1995/1996 and 1996/1997. We studied penguins foraging at all breeding stages, in various sea-ice conditions. For the first time in this species we observed nocturnal patterns of diving as the penguins dived more frequently and spent more time underwater around midnight than around noon. This behaviour may be related to the abundance of neritic krill, Euphausia crystallorophias, in the diet. Dive depth and duration varied extensively over the cycle, and appeared related to sea ice conditions rather than representative of the locality (22 m/78 s and 40 m/102 s with and without sea-ice, respectively). Comparisons with other studies showed that different diving behaviour previously observed in different localities can also occur at the same locality, and in some cases over a single foraging trip of a single penguin when short-term variation of external conditions occurred. Accepted: 27 September 1999  相似文献   

18.
Micronekton and macrozooplankton were collected during the austral spring of 1993 in the NW Weddell Sea. Sampling was done in three areas of the marginal ice zone: pack ice, ice edge, and open water, to examine the short-term effects of the spring phytoplankton bloom on the distribution and abundance of dominant fish and invertebrate species. Significant differences were observed for several common species, including Salpa thompsoni,Euphausia superba, Electrona antarctica, Gymnoscopelus braueri,and G. opisthopterus. Increased abundance seaward of the pack ice for these species is attributed to elevated phytoplankton and zooplankton biomass at the ice edge and in the open water areas. Distribution of the hyperiid amphipods, Cyllopus lucasii and Vibilia stebbingi mirrored that of S. thompsoni. No distributional trends between the areas were observed for Thysanoessa macrura, the amphipods Cyphocaris richardi and Primno macropa, the decapod shrimp Pasiphaea scotiae, the scyphomedusae Atolla wyvilli and Periphylla periphylla, and chaetognaths, indicating a trophic independence from the ice-edge bloom for these species. Lower occurrence of the mesopelagic fish Bathylagus antarcticus and Cyclothone microdon under the ice suggested that trophic repercussions of the spring bloom can also extend to deeper living species.  相似文献   

19.
During the late winter and spring of 1994, the influence of sea ice on phytoplankton succession in the water was studied at a coastal station in the northern Baltic Sea. Ice cores were taken together with water samples from the underlying water and analysed for algal composition, chlorophyll a and nutrients. Sediment traps were placed under the ice and near the bottom, and the sedimented material was analysed for algal composition. The highest concentration of ice algae (4.1 mmol C m−2) was found shortly before ice break-up in the middle of April, coincidental with the onset of an under-ice phytoplankton bloom. The ice algae were dominated by the diatoms Chaetoceros wighamii Brightwell, Melosira arctica (Ehrenberg) Dickie and Nitzschia frigida Grunow. Under the ice the diatom Achnanthes taeniata Grunow and the dinoflagellate Peridiniella catenata (Levander) Balech were dominant. Calculations of sinking rates and residence times of the dominant ice algal species in the photic water column indicated that only one ice algal species (Chaetoceros wighamii) had a seeding effect on the water column: this diatom dominated the spring phytoplankton bloom in the water together with Achnanthes taeniata and Peridiniella catenata. Received: 9 May 1997 / Accepted: 15 February 1998  相似文献   

20.
Beaumont  K.L.  Plummer  A.J.  Hosie  G.W.  Ritz  D.A. 《Hydrobiologia》2001,(1):55-65
The abundance of small faecal pellets is high in marine waters. Little is known, however, about the processes governing their production and fate in the water column. We investigated faecal pellet production and flux in relation to the phytoplankton and copepod assemblages present in Ellis Fjord, Antarctica. Results show that the phytoplankton community shifted from a dominance of diatoms to that of a cryptomonad species during late January. This coincided with an increase in abundance of the small copepods Paralabidocera antarctica and Oithona similis, although Oncaea curvata was still the dominant species. The mean faecal pellet flux was 9943 pellets m–2 d–1. Only 37% of the faecal pellet flux at 5 m sedimented to 10 m depth, 15% to 20 m, and 12% to 40 m depth. Our results suggest that recycling of faecal pellets by copepods contributes to this decreased flux with increasing depth, which concurs with results from large scale oceanic studies. Additionally, we propose that the summer ice melt changes the physical characteristics of the water column and the phytoplankton species abundance and distribution; both of which potentially impact on the distribution and abundance of copepods, thereby regulating faecal pellet flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号