首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 66 kDa protein, denoted P66, not hitherto classified as an integral component of yeast mitochondrial ATPase, is often observed in preparations of this enzyme complex. A physical association exists between P66 and the assembled ATPase complex since both components are coimmunoprecipitated by anti-F1 beta monoclonal antibody. Two recombinant clones expressing proteins immunologically similar to P66 were isolated from a yeast genomic library in lambda gt11 by screening with a polyclonal anti-holo-ATPase antibody. Based on restriction site mapping and partial nucleotide sequence analysis, both clones encompass the gene encoding the yeast heat shock protein hsp60. The identification of P66 with hsp60, taken together with its demonstrated association with the mitochondrial ATPase complex, is consistent with recent suggestions that hsp60 is involved in assembly of the ATP synthase complex.  相似文献   

2.
P H Krone  A Snow  A Ali  J J Pasternak  J J Heikkila 《Gene》1992,110(2):159-166
We have isolated several unique Xenopus laevis hsp30 (encoding heat-shock protein 30) genomic clones, one of which contains two complete hsp30 genes (hsp30C and hsp30D), as well as the promoter and N-terminal coding region of a third gene (hsp30E). Nucleotide sequence and restriction enzyme analysis revealed that this gene cluster is different from a cluster isolated previously. The hsp30C and hsp30D genes encode proteins of approx. 24 kDa. In all, the hsp30 gene family contains a minimum of seven genes. The strand exchange and breakage of the duplication events which generated this gene family appear to have occurred within tracts of DNA which potentially can assume a Z-DNA conformation. Comparing the amino acid (aa) sequences of each known Hsp30 protein with bovine alpha-crystallin revealed a high degree of shared conservation of aa that constitute the major structural feature(s) of alpha-crystallin.  相似文献   

3.
Exposure of the nematode Caenorhabditis elegans to a heat shock results in the induction of a number of genes not normally expressed in the animals under normal growth conditions. Among these are a family of genes encoding 16 kDa heat shock proteins (hsp16s). The major hsp16 genes have been cloned and characterized, and found to reside at two clusters in the C. elegans genome. One cluster contains two distinct genes, hsp16-1 and hsp16-48, arranged in divergent orientations separated by only 348 base pairs (bp). An identical pair, duplicated and inverted with respect to the first pair, is located 415 bp away. This cluster, located on chromosome V, therefore contains four genes as two identical pairs within less than 4 kilobases of DNA, and the pairs form the arms of a large inverted repeat. A second pair of genes, hsp16-2 and hsp16-41, constitutes a second hsp16 locus with an organization very similar to that of the hsp16-1/48 locus, except that it is not duplicated. Comparisons of the derived amino acid sequences show that hsp16-1 and hsp16-2 form a closely related pair, as do hsp16-41 and hsp16-48. These hsps show extensive sequence identity with the small hsps of Drosophila, as well as with mammalian alpha-crystallins. The coding region of each gene is interrupted by a single intron of approximately 50 bp, in a position homologous to that of the first intron in mouse alpha-crystallin gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have purified an alkali-tolerant catalase from the thermophilic bacterium Metallosphaera hakonensis. The catalase gene, which encodes 303 amino acids and has a calculated molecular mass of 33 kDa, including its putative signal peptide encoding sequence, was cloned. The deduced amino acid sequence exhibited a region-specific homology with the sequences of manganese catalases from thermophilic bacteria such as Thermus thermophilus and Thermus brockianus. When this gene was overexpressed in Escherichia coli, proteins of the expected size (33 kDa) were overproduced in the inactive form. We made several attempts to obtain active forms of or to activate these overproduced proteins. Upon their induction into E. coli, a 100-fold increase in the catalase activity was detected when high-concentration manganese was used as the medium. The catalase activity of the purified enzyme was optimal at a pH of 10.0. The alkali-tolerant property of this catalase makes it a promising enzyme in biotechnological applications such as H(2)O(2)-detoxifying systems.  相似文献   

5.
Abstract The HSP70 genes of eukaryotes show up to 50% nucleotide sequence homology to the dna K gene of Escherichia coli . This extreme structure conservation implies conservation of a function that may be needed by all cells, suggesting that other bacteria may have sequences related to HSP70 and dna K. Amongst other functions, HSP70-like proteins may act to limit thermal protein denaturation. In this study DNA isolated from thermophilic archaebacteria (from the family Desulfurococcus ) and thermophilic eubacteria (from the families Bacillus and Thermus ) was probed with sequences from a heat shock inducible HSP70 gene of the yeast Saccharomyces cerevisiae . Hybridization was detected under conditions of low stringency, indicating the existence of HSP70-related sequences in the thermophilic bacteria studied.  相似文献   

6.
The mutS gene, implicated in DNA mismatch repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 819-amino acid protein with a molecular mass of 91.4 kDa. Its predicted amino acid sequence showed 56 and 39% homology with Escherichia coli MutS and human hMsh2 proteins, respectively. The T.thermophilus mutS gene complemented the hypermutability of the E.coli mutS mutant, suggesting that T.thermophilus MutS protein was active in E.coli and could interact with E.coli MutL and/or MutH proteins. The T.thermophilus mutS gene product was overproduced in E.coli and then purified to homogeneity. Its molecular mass was estimated to be 91 kDa by SDS-PAGE but approx. 330 kDa by size-exclusion chromatography, suggesting that T.thermophilus MutS protein was a tetramer in its native state. Circular dichroic measurements indicated that this protein had an alpha-helical content of approx. 50%, and that it was stable between pH 1.5 and 12 at 25 degree C and was stable up to 80 degree C at neutral pH. Thermus thermophilus MutS protein hydrolyzed ATP to ADP and Pi, and its activity was maximal at 80 degrees C. The kinetic parameters of the ATPase activity at 65 degrees C were Km = 130 microM and Kcat = 0.11 s(-1). Thermus thermophilus MutS protein bound specifically with G-T mismatched DNA even at 60 degrees C.  相似文献   

7.
The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89 alpha, and hsp89 beta may be associated with the modifications in gene expression and cellular architecture that occur during differentiation. In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89 alpha mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89 alpha mRNA levels in HL-60 cells and of hsp89 beta mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.  相似文献   

8.
9.
10.
Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5' to the 3' direction, were a dehydrogenase, the dioxygenase small (beta)-subunit, and the dioxygenase large (alpha)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large alpha subunit did not cluster with most of the known alpha-subunit sequences but rather with three newly described alpha subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits.  相似文献   

11.
The genes encoding NAD(+)-dependent alanine dehydrogenases (AlaDHs) (EC 1.4.1.1) from the Antarctic bacterial organisms Shewanella sp. strain Ac10 (SheAlaDH) and Carnobacterium sp. strain St2 (CarAlaDH) were cloned and expressed in Escherichia coli. Of all of the AlaDHs that have been sequenced, SheAlaDH exhibited the highest level of sequence similarity to the AlaDH from the gram-negative bacterium Vibrio proteolyticus (VprAlaDH). CarAlaDH was most similar to AlaDHs from mesophilic and thermophilic Bacillus strains. SheAlaDH and CarAlaDH had features typical of cold-adapted enzymes; both the optimal temperature for catalytic activity and the temperature limit for retaining thermostability were lower than the values obtained for the mesophilic counterparts. The k(cat)/K(m) value for the SheAlaDH reaction was about three times higher than the k(cat)/K(m) value for VprAlaDH, but it was much lower than the k(cat)/K(m) value for the AlaDH from Bacillus subtilis. Homology-based structural models of various AlaDHs, including the two psychotropic AlaDHs, were constructed. The thermal instability of SheAlaDH and CarAlaDH may result from relatively low numbers of salt bridges in these proteins.  相似文献   

12.
H Koike  K Mamada  M Ikeuchi  Y Inoue 《FEBS letters》1989,244(2):391-396
The O2-evolving photosystem II core complex was isolated from a thermophilic cyanobacterium, Synechococcus vulcanus Copeland. Analysis by SDS-polyacrylamide gel electrophoresis revealed that the complex contained at least seven low-molecular-mass proteins in addition to the well characterized CP47 apoprotein, CP43 apoprotein, 33 kDa extrinsic protein, D1 protein, D2 protein and large subunit of cytochrome b-559. The separation of these low-molecular-mass proteins were very similar between cyanobacterial and higher plant PS II. N-terminal sequences of the 6.5 kDa and 3.9 kDa proteins of cyanobacterial core complex were determined after blotting to a polyvinylidene difluoride membrane. The sequence of the 6.5 kDa protein showed high homology with an internal sequence of plant psbH gene product, so-called 10 kDa phosphoprotein, but did not conserve the Thr residue which is specifically phosphorylated in plants. The sequence of the 3.9 kDa protein corresponded to the K protein of higher plants (mature form of psbK gene product). These results indicate that the products of both psbH and psbK genes are present in cyanobacterial PS II as well as being associated with the O2-evolving core complex.  相似文献   

13.
Blue-green algae (cyanobacteria) contain both primitive photosynthetic and respiratory systems in their membranes. The controversial genes coding for an alpha alpha 3-type cytochrome oxidase in cyanobacteria were examined. The DNA probe coding for the most conserved part of subunit I hybridized with DNA fragments from four cyanobacterial species. We have cloned the genes coding for subunits I and II from the genomic library of the thermophilic cyanobacterium Synechococcus vulcanus and determined the nucleotide sequence of the subunit II gene. The deduced protein sequence (327 amino acid residues) indicates that there are two hydrophobic segments near the N-terminus and a hydrophilic intermembrane domain containing ligands for CuA (the ESR-active Copper) similar to other subunit IIs. The S. vulcanus subunit II does not contain the cytochrome c moiety that is present in bacilli and thermophiles.  相似文献   

14.
The urease of thermophilic Bacillus sp. strain TB-90 is composed of three subunits with molecular masses of 61, 12, and 11 kDa. By using synthetic oligonucleotide probes based on N-terminal amino acid sequences of each subunit, we cloned a 3.2-kb EcoRI fragment of TB-90 genomic DNA. Moreover, we cloned two other DNA fragments by gene walking starting from this fragment. Finally, we reconstructed in vitro a 6.2-kb DNA fragment which expressed catalytically active urease in Escherichia coli by combining these three DNA fragments. Nucleotide sequencing analysis revealed that the urease gene complex consists of nine genes, which were designed ureA, ureB, ureC, ureE, ureF, ureG, ureD, ureH, and ureI in order of arrangement. The structural genes ureA, ureB, and ureC encode the 11-, 12-, and 61-kDa subunits, respectively. The deduced amino acid sequences of UreD, UreE, UreF, and UreG, the gene products of four accessory genes, are homologous to those of the corresponding Ure proteins of Klebsiella aerogenes. UreD, UreF, and UreG were essential for expression of urease activity in E. coli and are suggested to play important roles in the maturation step of the urease in a co- and/or posttranslational manner. On the other hand, UreH and UreI exhibited no significant similarity to the known accessory proteins of other bacteria. However, UreH showed 23% amino acid identity to the Alcaligenes eutrophus HoxN protein, a high-affinity nickel transporter.  相似文献   

15.
Few strains of thermophilic Bacillus spp are readily transformable with plasmid DNA. Given the considerable phylogenetic and phenotypic diversity amongst thermophilic bacilli, we have examined whether transformability is a trait associated with a particular phylogenetic group, by sequencing the 16S ribosomal RNA genes from transformable strains NUB3621, K1041, and NRRL1174. Although all of these strains were described in the literature as B. stearothermophilus, only NRRL1174 is closely related to the type strain of this species. Based on its 16S rDNA sequence and physiological data K1041 appeared to belong to the species B. thermodenitrificans, while NUB3621 showed a slightly closer relationship to B. thermoglucosidasius than to B. stearothermophilus. Therefore we conclude that the trait of transformability, though possibly strain-specific, is not limited to a single species of thermophilic Bacillus.  相似文献   

16.
Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.  相似文献   

17.
The hsp70(dnaK) locus of the moderate thermophilic archaeon Methanosarcina thermophila TM-1 was cloned, sequenced, and tested in vitro to measure gene induction by heat and ammonia, i.e., stressors pertinent to the biotechnological ecosystem of this methanogen that plays a key role in anaerobic bioconversions. The locus' genes and organization, 5'-grpE-hsp70(dnaK)-hsp40 (dnaJ)-trkA-3', are the same as those of the closely related mesophile Methanosarcina mazei S-6, but different from those of the only other archaeon for which comparable sequence data exist, the thermophile Methanobacterium thermoautotrophicum deltaH, from another genus, in which trkA is not part of the locus. The proteins encoded in the TM-1 genes are very similar to the S-6 homologs, but considerably less similar to the deltaH proteins. The TM-1 Hsp70(DnaK) protein has the 23-amino acid deletion--by comparison with homologs from gram-negative bacteria first described in the S-6 molecule and later found to be present in all homologs from archaea and gram positives. The genes responded to a temperature elevation in a manner that demonstrated that they are heat-shock genes, functionally active in vivo. Ammonia also induced a heat-shock type of response by hsp70(dnaK), and a similar response by trkA. The data suggest that the moderate thermophile TM-1 has an active Hsp70(DnaK)-chaperone machine in contrast to hyperthermophilic archaea, and that trkA is a stress gene, inasmuch as it responds like classic heat-shock genes to stressors that induce a typical heat-shock response.  相似文献   

18.
Four MAR-binding proteins of 60, 65, 70 and 72 kDa have been detected by South-Western blotting and isolated from pea nuclear matrices. Two cDNAs encoding the 60 and 65 kDa proteins (MARBP-1 and MARBP-2) were isolated from a pea leaf cDNA library by screening with a PCR product obtained using degenerate primers based on an amino acid sequence from the 60 kDa protein. The proteins of 560 and 550 amino acids are 86% identical and contain several KKD/E repeats near the C-terminus. Escherichia coli-expressed MARBP-1 specifically binds A/T-rich MAR DNA. The interaction of MARBP-1/MARBP-2 with MAR DNA involves novel DNA-binding motifs. The MARBP-1 and MARBP-2 genes are expressed in a range of pea tissues and are encoded by genes at different loci. MARBP-1 and MARBP-2 are homologous to yeast nucleolar proteins Nop56p and Nop58p, which are involved in ribosome biogenesis, and to similar highly conserved proteins in other eukaryotes and in archaebacteria. MARBP-1 and MARBP-2 may have multifunctional roles in chromatin organisation and ribosome biogenesis.  相似文献   

19.
Prolamin is the dominant class of seed storage protein in grasses (Poaceae). Information on the 10 kDa multigene family coding for prolamins characteristic of the bambusoid-oryzoid grasses is limited. Two genes encoding 10 kDa prolamin were cloned and sequenced in the bambusoid species Phyllostachys aurea to assess the sequence diversity of this gene family in the oryzoid-bambusoid grasses. The genes, ~417 bp in length, were 96% similar at the DNA sequence level, differing in 12 base substitutions dispersed throughout the sequence. Eight of these mutations were nonsynonymous, leading to amino acid substitutions in the coding region, and one was nonsense, producing an amber stop codon. One gene had an open reading frame (ORF) of 139 amino acids, while the other gene had a shorter ORF (106 amino acids) due to the presence of a stop codon in the coding region and, thus, represents a pseudogene. Deduced proteins showed amino acid composition similar to that of rice. The study underscores the overall conserved nature of this multigene family and reflects considerable sequence divergence at the DNA and amino acid levels between the Oryza and the Phyllostachys genes. The systematic implication of the data is discussed in light of the inconsistent placement of Oryza in the Bambusoideae or Oryzoideae.  相似文献   

20.
Genes encoding virus-specific late proteins with molecular mass 36 kDa and 12 kDa were mapped in HindIII-P DNA fragment of vaccinia virus strain L-IVP by hybrid selection of RNA to cloned DNA fragments followed by in vitro translation. RNA origin site of the 36K protein was detected in HindIII-J fragment. Nucleotide sequences of these genes were determined. Amino acid sequences of the 36K and 12K polypeptides were compared with the protein bank PIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号