首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Recently, several mutants of cytochrome P450 BM3 (CYP102A1) with high activity toward drugs have been obtained by a combination of site-directed and random mutagenesis. In the present study, the applicability of these mutants as biocatalysts in the production of reactive metabolites from the drugs clozapine, diclofenac and acetaminophen was investigated. We showed that the four CYP102A1 mutants used in this study formed the same metabolites as human and rat liver microsomes, with an activity up to 70-fold higher compared to human enzymes. Using these CYP102A1 mutants, three novels GSH adducts of diclofenac were discovered which were also formed in incubations with human liver microsomes. This work shows that CYP102A1 mutants are very useful tools for the generation of high levels of reference metabolites and reactive intermediates of drugs. Producing high levels of those reactive metabolites, that might play a role in adverse drug reactions (ADRs) in humans, will facilitate their isolation, structural elucidation, and could be very useful for the toxicological characterization of novel drugs and/or drug candidates.  相似文献   

2.
The peroxidative activation of the antitumor drugs, etoposide (VP-16) and teniposide (VM-26), has been studied in vitro. Both of these drugs, in the presence of horseradish peroxidase or prostaglandin synthetase, formed phenoxy radical intermediates. Furthermore, this activation also resulted in the formation of two metabolites from each of the drugs. Using HPLC and mass spectrometry, one of the metabolites was shown to be the reactive o-quinone derivative of the parent drug which resulted from the peroxidative O-demethylation. It appears that O-demethylation catalyzed by peroxidases may be an important mechanism for the formation of reactive intermediates and may play a role in the mechanism of action of VP-16 and VM-26.  相似文献   

3.
In an increasing number of cases, a deeper understanding of the biochemical basis for idiosyncratic adverse drug reactions (IADRs) has aided to replace a vague perception of a chemical class effect with a sharper picture of individual molecular peculiarity. Considering that IADRs are too complex to duplicate in a test tube, and their idiosyncratic nature precludes prospective clinical studies, it is currently impossible to predict which new drugs will be associated with a significant incidence of toxicity. Because it is now widely appreciated that reactive metabolites, as opposed to the parent molecules from which they are derived, are responsible for the pathogenesis of some IADRs, the propensity of drug candidates to form reactive metabolites is generally considered a liability. Procedures have been implemented to monitor reactive‐metabolite formation in discovery with the ultimate goal of eliminating or minimizing the liability via rational structural modification of the problematic chemical series. While such mechanistic studies have provided retrospective insight into the metabolic pathways which lead to reactive metabolite formation with toxic compounds, their ability to accurately predict the IADR potential of new drug candidates has been challenged. There are several instances of drugs that form reactive metabolites, but only a fraction thereof cause toxicity. This review article will outline current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these assays. Plausible reason(s) for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive‐metabolite assessments when nominating drug candidates for development.  相似文献   

4.
Glutathione plays an important role as not only a scavenger of reactive oxygen species but also in the conjugation or detoxification of electrophilic reactive metabolites, which has been thought to be one of the causes for idiosyncratic drug toxicity (IDT). Therefore, toxic responses to the reactive metabolites have been expected to be expressed more strongly in a glutathione-depleted condition. In the present study, we attempted to establish an in vitro cytotoxicity assay method to evaluate the toxicity of the reactive metabolite using rat primary cultured hepatocytes with cellular glutathione depletion by l-buthionine-S,R-sulfoximine. Also, we investigated whether the IDT risk is predictable by comparing the cytotoxic sensitivity between glutathione-depleted hepatocytes and untreated hepatocytes. Consequently, 10 drugs of 42 approved drugs, which were classified into 4 IDT categories (Withdrawn, Black box warning, Warning, and Safe), demonstrated higher cytotoxic sensitivity in the glutathione-depleted hepatocytes. Furthermore, a correlation was observed between the incidence of drugs with higher cytotoxic sensitivity in the glutathione-depleted hepatocytes and the IDT risk. The incidence was 50% in the Withdrawn category, 38% in the Black box warning category, 22% in the Warning category, and 8% in the Safe category. These results suggest that the IDT risk of some drugs may be predicted by comparing the cytotoxic sensitivity between them. Additionally, this method may be useful as a screening in the early stage of drug development where leads/candidates are optimized.  相似文献   

5.
DMP 406 is a clozapine analogue developed by Dupont-Pharma for the treatment of schizophrenia. Unfortunately it caused agranulocytosis in dogs during preclinical studies. Clozapine also causes agranulocytosis and this is believed to be due to a reactive nitrenium ion metabolite produced by neutrophils. We studied the oxidation of DMP 406 by activated neutrophils and found that the major reactive species that is produced is not a nitrenium ion but rather an imine. This metabolite is similar to the reactive metabolite that has been proposed to be responsible for mianserin-induced agranulocytosis. Therefore we also studied the oxidation of mianserin by activated neutrophils and found that, although the major species is an iminium ion, it also bears a lactam moiety in the piperazine ring resulting from further oxidation. We usually find that HOCl is a good model system for the production of reactive metabolites of drugs that are formed by activated neutrophils, but in the case of both DMP 406 and mianserin, the products produced were significantly different than those formed by activated neutrophils. In contrast, the combination of horseradish peroxidase and hydrogen peroxide (HRP/H(2)O(2)) formed a very similar pattern of products, and this system was used to produce sufficient quantities of metabolites to allow for identification. The reactive metabolites of both DMP 406 and mianserin reacted with a range of nucleophiles, but in many cases the reaction was reversible. The best nucleophile for trapping these reactive metabolites was cyanide. It has been demonstrated that the products of clozapine oxidation by HRP/H(2)O(2), presumably the nitrenium ion, induced apoptosis in neutrophils at therapeutic concentrations of clozapine. It has been suggested that this process is involved in the mechanism of clozapine-induced agranulocytosis. We tested DMP 406 and mianserin in this system to see if the ability of a reactive metabolite of a drug to cause apoptosis could predict the ability of that drug to cause agranulocytosis. We used clozapine as a positive control and we also tested olanzapine, a drug that forms a reactive metabolite similar to that of clozapine but is given at a lower dose and does not cause agranulocytosis. We found that DMP 406 did not increase apoptosis at concentrations below 50 microM, and although mianserin did increase apoptosis at 10 microM this is above the therapeutic concentration. Olanzapine caused an increase in apoptosis at the same concentration as clozapine (1 microM), but because its therapeutic concentration is lower, this concentration was above the pharmacological range. There was no increase in apoptosis with any drug in the absence of HRP/H(2)O(2). These results indicate that this assay is unable to reliably predict the ability of different types of drugs to cause agranulocytosis. This is not a surprising result given that different drugs may induce agranulocytosis by different mechanisms.  相似文献   

6.
Covalent binding of reactive metabolites of drugs to proteins has been a predominant hypothesis for the mechanism of toxicity caused by numerous drugs. The development of efficient and sensitive analytical methods for the separation, identification, quantification of drug-protein adducts have important clinical and toxicological implications. In the last few decades, continuous progress in analytical methodology has been achieved with substantial increase in the number of new, more specific and more sensitive methods for drug-protein adducts. The methods used for drug-protein adduct studies include those for separation and for subsequent detection and identification. Various chromatographic (e.g., affinity chromatography, ion-exchange chromatography, and high-performance liquid chromatography) and electrophoretic techniques [e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional SDS-PAGE, and capillary electrophoresis], used alone or in combination, offer an opportunity to purify proteins adducted by reactive drug metabolites. Conventionally, mass spectrometric (MS), nuclear magnetic resonance, and immunological and radioisotope methods are used to detect and identify protein targets for reactive drug metabolites. However, these methods are labor-intensive, and have provided very limited sequence information on the target proteins adducted, and thus the identities of the protein targets are usually unknown. Moreover, the antibody-based methods are limited by the availability, quality, and specificity of antibodies to protein adducts, which greatly hindered the identification of specific protein targets of drugs and their clinical applications. Recently, the use of powerful MS technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight) together with analytical proteomics have enabled one to separate, identify unknown protein adducts, and establish the sequence context of specific adducts by offering the opportunity to search for adducts in proteomes containing a large number of proteins with protein adducts and unmodified proteins. The present review highlights the separation and detection technologies for drug-protein adducts, with an emphasis on methodology, advantages and limitations to these techniques. Furthermore, a brief discussion of the application of these techniques to individual drugs and their target proteins will be outlined.  相似文献   

7.
DITOP: drug-induced toxicity related protein database   总被引:1,自引:0,他引:1  
MOTIVATION: Drug-induced toxicity related proteins (DITRPs) are proteins that mediate adverse drug reactions (ADRs) or toxicities through their binding to drugs or reactive metabolites. Collection of these proteins facilitates better understanding of the molecular mechanisms of drug-induced toxicity and the rational drug discovery. Drug-induced toxicity related protein database (DITOP) is such a database that is intending to provide comprehensive information of DITRPs. Currently, DITOP contains 1501 records, covering 618 distinct literature-reported DITRPs, 529 drugs/ligands and 418 distinct toxicity terms. These proteins were confirmed experimentally to interact with drugs or their reactive metabolites, thus directly or indirectly cause adverse effects or toxicities. Five major types of drug-induced toxicities or ADRs are included in DITOP, which are the idiosyncratic adverse drug reactions, the dose-dependent toxicities, the drug-drug interactions, the immune-mediated adverse drug effects (IMADEs) and the toxicities caused by genetic susceptibility. Molecular mechanisms underlying the toxicity and cross-links to related resources are also provided while available. Moreover, a series of user-friendly interfaces were designed for flexible retrieval of DITRPs-related information. The DITOP can be accessed freely at http://bioinf.xmu.edu.cn/databases/ADR/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

8.
Herbal bioactivation: the good, the bad and the ugly   总被引:14,自引:0,他引:14  
Zhou S  Koh HL  Gao Y  Gong ZY  Lee EJ 《Life sciences》2004,74(8):935-968
It has been well established that the formation of reactive metabolites of drugs is associated with drug toxicity. Similarly, there are accumulating data suggesting the role of the formation of reactive metabolites/intermediates through bioactivation in herbal toxicity and carcinogenicity. It has been hypothesized that the resultant reactive metabolites following herbal bioactivation covalently bind to cellular proteins and DNA, leading to toxicity via multiple mechanisms such as direct cytotoxicity, oncogene activation, and hypersensitivity reactions. This is exemplified by aristolochic acids present in Aristolochia spp, undergoing reduction of the nitro group by hepatic cytochrome P450 (CYP1A1/2) or peroxidases in extrahepatic tissues to reactive cyclic nitrenium ion. The latter was capable of reacting with DNA and proteins, resulting in activation of H-ras oncogene, gene mutation and finally carcinogenesis. Other examples are pulegone present in essential oils from many mint species; and teucrin A, a diterpenoid found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming diets. Extensive pulegone metabolism generated p-cresol that was a glutathione depletory, and the furan ring of the diterpenoids in germander was oxidized by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase. On the other hand, some herbal/dietary constituents were shown to form reactive intermediates capable of irreversibly inhibiting various CYPs. The resultant metabolites lead to CYP inactivation by chemical modification of the heme, the apoprotein, or both as a result of covalent binding of modified heme to the apoprotein. Some examples include bergamottin, a furanocoumarin of grapefruit juice; capsaicin from chili peppers; glabridin, an isoflavan from licorice root; isothiocyanates found in all cruciferous vegetables; oleuropein rich in olive oil; dially sulfone found in garlic; and resveratrol, a constituent of red wine. CYPs have been known to metabolize more than 95% therapeutic drugs and activate a number of procarcinogens as well. Therefore, mechanism-based inhibition of CYPs may provide an explanation for some reported herb-drug interactions and chemopreventive activity of herbs. Due to the wide use and easy availability of herbal medicines, there is increasing concern about herbal toxicity. The safety and quality of herbal medicine should be ensured through greater research, pharmacovigilance, greater regulatory control and better communication between patients and health professionals.  相似文献   

9.
Biotransformation of chemically stable compounds to reactive metabolites which can bind covalently to macromolecules, such as proteins and DNA, is considered as an undesirable feature of drug candidates. As part of an overall assessment of absorption, distribution, metabolism and excretion (ADME) properties, many pharmaceutical companies have put methods in place to screen drug candidates for their tendency to generate reactive metabolites and as well characterize the nature of the reactive metabolites through in vitro and in vivo studies. After identification of the problematic compounds, steps can be taken to minimize the potential of bioactivation through appropriate structural modifications. For these reasons, detection, structural characterization and quantification of reactive metabolites by mass spectrometry have become an important task in the drug discovery process. Triple quadrupole mass spectrometry is traditionally employed for the analysis of reactive metabolites. In the past 3 years, a number of new mass spectrometry methodologies have been developed to improve the sensitivity, selectivity and throughput of the analysis. This review focuses on the recent advances in the detection and characterization of reactive metabolites by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in drug discovery and development, especially through the use of linear ion trap (LTQ), hybrid triple quadrupole-linear ion trap (Q-trap) and the high resolution LTQ-Orbitrap instruments.  相似文献   

10.
A novel potent NMDA-NR2B selective antagonist without the reactive metabolites formation issue was identified. Through this study, a close correlation between reactive metabolites formation and calculated HOMO energies of parent compounds was found.  相似文献   

11.
Transmitted Soret band optical microscopy has been used to image the entry and passage of reactive oxygen metabolites across target erythrocytes. Due to the rapid cytosolic diffusion of hemoglobin in comparison to video rates, it was necessary to use erythrocytes with relatively immobilized hemoglobin. To achieve this, erythrocytes from patients with sickle cell anemia were used. The movement of reactive oxygen metabolites across rabbit IgG-opsonized sickle cells was observed in real time. These observations indicate that reactive oxygen metabolites can enter and cross targets in an asymmetric fashion.  相似文献   

12.
As with all body organs, the immune system is subjected to attack by a variety of toxins. Serious consequences can result because the immune organs serve as a defense against infective agents. The toxins, both organic and inorganic, fall into a large variety of classes, such as metals, therapeutic drugs, industrial chemicals, pollutants, pesticides, fuels, herbicides and abused drugs. Although the mode of action is multifaceted, our focus is on electron transfer (ET), reactive oxygen species (ROS), antioxidants (AOs), cell signaling, and receptors. It is significant that the toxins or their metabolites incorporate ET functionalities capable of redox cycling with resultant generation of ROS and accompanying oxidative stress.  相似文献   

13.
The Chernobyl nuclear accident produced the largest unintended release of radionuclides in history, with dramatic consequences for humans and other organisms. Exposure to ionizing radiation is known to reduce circulating and stored levels of specific antioxidants in birds and humans, thus potentially increasing oxidative stress. However, overall effects of radioactive exposure on oxidative status have never been investigated in any free ranging vertebrate. We measured plasma antioxidant capacity and concentration of reactive oxygen metabolites in adult barn swallows (Hirundo rustica) from colonies with variable background radiation levels in the Chernobyl region in Ukraine and Belarus. We predicted that antioxidants would decrease while reactive oxygen metabolites would increase with exposure to increasing levels of radiation at the breeding sites. Consistent with this expectation, radiation level positively predicted plasma concentration of reactive oxygen metabolites, whereas no significant covariation was found with non-enzymatic plasma antioxidant capacity. An index of oxidative stress was also larger in barn swallows exposed to high contamination levels. Thus, radioactive contamination appeared to be responsible for the increased generation of reactive oxygen metabolites and the imbalance between reactive oxygen metabolites and non-enzymatic plasma antioxidant capacity.  相似文献   

14.
Amphetamine, fenfluramine and benzphetamine were the drugs investigated for the isolation of toxic metabolites using the biochemical mechanism of cytochrome P-450 monooxygenase mediated reaction. NH3 derived from amphetamine should be innocuous unless the in vivo ammonia detoxifying mechanism is overwhelmed thus culminating in ammonia intoxication in cerebral tissues with consequent concomitant convulsion. +CF3 electrophile derived from fenfluramine is potentially reactive with nucleophiles of proteins, carbohydrates, lipids, DNA and RNA. The derivation of .CF3 was discussed. Methylbenzylamine was derived from benzphetamine. This, in the nitrosating environment of the gastrointestinal tract, could yield the carcinogenic methylbenzylnitrosamine.  相似文献   

15.
Eosinophils play a central role in the pathogenesis of parasitic infections, atopic diseases, and bullous dermatoses. To understand the regulative function of phosphatidylinositol 3-kinases in cell responses of eosinophils, phospholipid metabolism and production of reactive oxygen metabolites were followed after stimulation with C5a. Measurements of phosphatidylinositol lipids and analysis of deacylated products of separated lipid extracts showed fast and transient formation of phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). Cell studies in the presence of the tyrosine kinase blocker genistein indicated that C5a-stimulated PIP(3) formation occurred independently of tyrosine kinase activity. To analyze the function of PI4,5P(2)-3-kinase in eosinophils, the influence of wortmannin and LY294002 on production of reactive oxygen metabolites was studied. Both compounds inhibited with similar concentration dependency C5a-induced formation of PIP(3) and production of reactive oxygen metabolites. In summary, these data showed for the first time the involvement of PI4,5P(2)-3-kinase in the production of reactive oxygen metabolites in eosinophils.  相似文献   

16.
17.
In this study we test the hypothesis that reactive oxygen metabolites are delivered from neutrophils to simultaneously both the cell surface and cytosol of opsonized YAC erythroleukemic target cells. Using 5′ (or 6′) carboxyl-2′,7′-dichlorodihy-drofluorescein (H2-CDCF) diacetate as starting material, we synthesized its succinimidyl ester derivative. H2-CDCF-conjugated IgG prepared from the succinimidyl ester derivative was used to opsonize targets. In vitro studies have shown that H2-CDCF becomes fluorescent upon exposure to reactive oxygen metabolites, including hydrogen peroxide. Using video intensified epifluorescence microscopy, we observed that reactive oxygen metabolites are deposited on tumor cell membranes during neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC). This deposition process is catalase sensitive. The role of reactive oxygen metabolites produced by neutrophils in triggering the oxidation of H2-CDCF is further supported by the observation that neutrophils from chronic granulomatous disease (CGD) patients did not affect target fluorescence. YAC tumor cells were also labeled with dihydrorhodamine 123 or dihydrotetramethylrosamine. The oxidized forms of these reagents were found within the cytoplasm of YAC cells. During ADCC normal neutrophils, but not neutrophils obtained from CGD patients, triggered the oxidation of dihydrorhodamine 123 and dihydrotetramethyl-rosamine within tumor cells. Using two-color automated epifluorescence micros-copy, we could not detect temporal intermediates with fluorescence in only one compartment, i.e., either solely on the plasma membrane or in the cytoplasm. These observations suggest that reactive oxygen metabolites cross target membranes (<12) sec. These studies show that reactive oxygen metabolites are deposited both onto and into tumor cells during ADCC, wherein both compartments could become vulnerable to oxidant-mediated damage. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences.  相似文献   

19.
摘要:缺血性脑卒中是成年人群致残、致死的重要原因之一,有效治疗手段和药物的匮乏是脑卒中致残的主要原因。精氨酸既是一种营养物质,又具有多种独特的生理与药理作用,在早产儿和严重应激状态下精氨酸在维持正氮平衡与正常生理功能方面发挥重要作用,常将精氨酸称为条件必需氨基酸。精氨酸是生物体合成多胺的前体物质,同时精氨酸代谢也产生高活性自由基一氧化氮。精氨酸代谢及其代谢产物的改变可对脑卒中产生多种影响,如线粒体功能破坏、钙离子通道紊乱、血脑屏障损伤等。本文综述了精氨酸及其代谢产物在缺血性脑卒中病理过程中的作用。深入的研究和探讨其损伤和保护的双重作用机制将为缺血性脑卒中的防御和治疗提供新的策略。  相似文献   

20.
Primaquine is the drug of choice for the radical cure of Plasmodium vivax malaria, but possesses serious side effects. In this study novel primaquine analogues were designed and synthesized. Lower toxicity was achieved by reducing or eliminating the tendency of forming chemically reactive and toxic intermediates and metabolites. In vitro and in vivo studies found that synthesized compounds were less toxic than the parent compound primaquine, while preserving the desired antimalarial activity. Some of these compounds possess a therapeutic index over 10 times superior to that of the commonly used antimalarial drug chloroquine. These compounds, as well as the underlying design rationale, may find usefulness in the discovery and development of new antimalarial drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号