首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
ERp57 is a ubiquitous ER chaperone that has disulfide isomerase activity. Here, we found that both ERp57 and gastric H+,K+-ATPase are expressed in a sample derived from the apical canalicular membranes of parietal cells. Overexpression of ERp57 in HEK293 cells stably expressing H+,K+-ATPase significantly increased the ATPase activity without changing the expression level of H+,K+-ATPase. Interestingly, overexpression of a catalytically inactive mutant of ERp57 (C57S/C60S/C406S/C409S) in the cells also increased H+,K+-ATPase activity. In contrast, knockdown of endogenous ERp57 in H+,K+-ATPase-expressing cells significantly decreased ATPase activity without changing the expression level of H+,K+-ATPase. Overexpression and knockdown of ERp57 had no significant effect on the expression and function of Na+,K+-ATPase. These results suggest that ERp57 positively regulates H+,K+-ATPase activity apart from its chaperoning function.  相似文献   

3.
Crystallization of the gastric H,K-ATPase   总被引:1,自引:0,他引:1  
Crystalline arrays of the gastric H,K-ATPase were obtained in membrane preparations from hog and rabbit gastric mucosa. The lattice was formed rapidly in a medium containing K+, vanadate, Mg2+, and dimethyl sulfoxide at pH 6.0-6.9 in imidazole buffer from 4 to 22 degrees C. The crystal lattice exhibited P2 symmetry, and the unit cell dimension (a = 5.6, b = 11, and c = 10 nm) could accommodate 2 polypeptides of mass 116-129 kDa. In addition, the isolated preparation contained previously undescribed long cylindrical structures 16 nm thick. These structures consisted of a central core 6-7 nm wide from which particles spaced 5.5 nm apart protruded symmetrically.  相似文献   

4.
Solubilization and reconstitution of the gastric H,K-ATPase   总被引:3,自引:0,他引:3  
Proteoliposomes containing the hog gastric H+,K+-ATPase were prepared from cholate and n-octyl glucoside extracts of native microsomes. Experiments were presented which show reconstitution-dependent selective purification of a 94-kDa peptide capable of Rb+/Rb+ exchange and active H+ transport. The absence of selective enrichment of residual protein contamination in this material suggests but does not prove that those transport reactions are attributable only to the 94-kDa peptide. Transport demonstrated inhibitor sensitivity and cation specificity comparable to the microsomal gastric ATPase. In K2SO4 media the H+ transport reaction was protonophore insensitive and correlated with MgATP-dependent 86Rb+ extrusion. This and other evidence suggested that active transport occurs via electroneutral H+in for K+out exchange. 86Rb+ exchange (uptake) in the proteoliposomes demonstrated both saturable and nonsaturable components. At a K0.5 = 1.5 mM, saturable 86Rb+ uptake accounted for about 90% of Rb+ influx. The vanadate-sensitive cation exchange indicated that the ATPase was reconstituted asymmetrically into the proteoliposomes (70% cis-/30% trans-vanadate site). 86Rb+ exchange was inhibited by ATP and stimulated about 2-fold by low Mg2+ and 5 mM phosphate. These ligand effects and the demonstration of comparable rates of passive exchange and active Rb+ efflux suggest that passive K+ exchange is not severely limited by a K+-occluded enzyme form in the H,K-ATPase. A model compatible with this hypothesis is suggested.  相似文献   

5.
The gastric H,K-ATPase is an alpha,beta heterodimer. The large catalytic subunit is composed, in the case of the hog enzyme, of 1033 amino acids, whereas the beta subunit is composed of about 291 amino acids and is heavily glycosylated. The membrane topology of the alpha subunit is difficult to predict using hydropathy analysis. Tryptic hydrolysis of intact, inside out vesicles followed by cysteine labelling with fluorescein-5-maleimide provided experimental evidence for an 8 membrane spanning model for the alpha subunit, between residues 104 and 162 (M1/M2), 291 and 358 (M3/M4), 776 and 835 (M5/M6), and 853 and 946 (M7/M8). No evidence was found for a pair of segments (M9/M10) towards the C terminal end of the molecule, contrary to predictions for the Na,K- and Ca-ATPases. Iodination of intact vesicles followed by carboxypeptidase Y cleavage of the C terminal tyrosines showed that the C terminal end of the alpha subunit was cytoplasmic. The epitope for antibody 146 was extracytoplasmic and located between residues 871 to 874 between M7/M8. The binding site of the K competitive imidazo-pyridine, SCH28080, was to the extracytoplasmic loop between M1 and M2, whereas the binding of the covalent SH reagent generated from acid activation of omeprazole in acid transporting vesicles was to 2 cysteines at positions 813 (or 822) and 892 predicted to be in the extracytoplasmic loops connecting M5/M6 and M7/M8, respectively. The beta subunit was only hydrolysed in broken vesicles. A fragment beginning at position 236 was liberated under these conditions only in the presence of reducing agents, showing that cysteine 210 and 263 were disulfide linked. It seems that this subunit has only a single membrane spanning segment as predicted by hydrophobicity. Binding of either SCH28080 or omeprazole to the extracytoplasmic face of the enzyme affected cytoplasmic conformational changes, showing that there was transmembranal transmission of changes of shape of the protein.  相似文献   

6.
Chimeras of the catalytic subunits of the gastric H,K-ATPase and Na, K-ATPase were constructed and expressed in LLC-PK1 cells. The chimeras included the following: (i) a control, H85N (the first 85 residues comprising the cytoplasmic N terminus of Na,K-ATPase replaced by the analogous region of H,K-ATPase); (ii) H85N/H356-519N (the N-terminal half of the cytoplasmic M4-M5 loop also replaced); and (iii) H519N (the entire front half replaced). The latter two replacements confer a decrease in apparent affinity for extracellular K+. The 356-519 domain and, to a greater extent, the H519N replacement confer increased apparent selectivity for protons relative to Na+ at cytoplasmic sites as shown by the persistence of K+ influx when the proton concentration is increased and the Na+ concentration decreased. The pH and K+ dependence of ouabain-inhibitable ATPase of membranes derived from the transfected cells indicate that the H519N and, to a lesser extent, the H356-519N substitution decrease the effectiveness of K+ to compete for protons at putative cytoplasmic H+ activation sites. Notable pH-independent behavior of H85N/H356-519N at low Na+ suggests that as pH is decreased, Na+/K+ exchange is replaced largely by (Na+ + H+)/K+ exchange. With H519N, the pH and Na+ dependence of pump and ATPase activities suggest relatively active H+/K+ exchange even at neutral pH. Overall, this study provides evidence for important roles in cation selectivity for both the N-terminal half of the M4-M5 loop and the adjacent transmembrane helice(s).  相似文献   

7.
It cannot be predicted from hydropathy analysis whether the C-terminal end of the alpha subunit of the gastric H,K-ATPase is cytoplasmic or extracytoplasmic. The sideness of the C-terminal amino acids was determined by taking advantage of the two C-terminal tyrosines in the primary sequence of the enzyme. Intact, cytoplasmic side out vesicles derived from hog gastric mucosa or detergent solubilized vesicles were iodinated by the lactoperoxidase method and then the C-terminal amino acids hydrolyzed by carboxypeptidase Y. The alpha and beta subunits were separated by SDS gel electrophoresis. The level of iodination of the alpha subunit following solubilization was about three fold greater than when intact vesicles were iodinated, and the beta subunit was iodinated only when solubilized enzyme was used. Carboxypeptidase Y removed 28 +/- 4% of the radioactivity from the alpha subunit iodinated in intact vesicles. These data are consistent with a cytoplasmic location of the C-terminal amino acids of the alpha subunit and with a mostly extracytoplasmic location of the amino acids of the beta subunit.  相似文献   

8.
The fluorescent styryl dye RH421 was used to identify and investigate electrogenic reaction steps of the H,K-ATPase pump cycle. Equilibrium titration experiments were performed with membrane vesicles isolated from hog gastric mucosa, and cytoplasmic and luminal binding of K(+) and H(+) ions was studied. It was found that the binding and release steps of both ion species in both principal conformations of the ion pump, E(1) and P-E(2), are electrogenic, whereas the conformation transitions do not contribute significantly to a charge movement within the membrane dielectric. This behavior is in agreement with the transport mechanism found for the Na,K-ATPase and the sarcoplasmic reticulum Ca-ATPase. The data were analyzed on the basis of the Post-Albers reaction cycle. For proton binding, two pK values were found in both conformations: 6.7 and 相似文献   

9.
The change of blood pressure and the induction of Na, K-ATPase alpha 1-subunit mRNA have been investigated in the renal cortex of aldosterone-treated hypertensive rat. The increase of blood pressure by aldosterone-treatment for 25 days was decreased by the treatment of amiloride or spironolactone. The level of Na, K-ATPase alpha 1-subunit mRNA of the renal cortex in aldosterone-treated rat was increased than that in the control, and its increase was repressed by treatment of spironolactone, but not altered by the treatment of amiloride. This result suggests that the increase of Na, K-ATPase alpha 1-subunit mRNA in the renal cortex of aldosterone-treated hypertensive rat may be related with the direct induction of Na, K-ATPase mRNA without the increase of Na-traffic through Na-channel.  相似文献   

10.
Helicobacter pylori infection of the human stomach is associated with altered acid secretion, loss of acid-producing parietal cells, and, in some hosts, adenocarcinoma. We have used a transgenic mouse model to study the effects of parietal cell ablation on H. pylori pathogenesis. Ablation results in amplification of the presumptive gastric epithelial stem cell and its immediate committed daughters. The amplified cells produce sialylated oncofetal carbohydrate antigens that function as receptors for H. pylori adhesins. Attachment results in enhanced cellular and humoral immune responses. NeuAc alpha 2,3Gal beta 1,4 glycoconjugates may not only facilitate persistent H. pylori infection in a changing gastric ecosystem, but by promoting interactions with lineage progenitors and/or initiated cells contribute to tumorigenesis in patients with chronic atrophic gastritis.  相似文献   

11.
Inhibitor and ion binding sites on the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
Munson K  Garcia R  Sachs G 《Biochemistry》2005,44(14):5267-5284
The gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface. This allows allocation of the binding site to a luminal vestibule adjacent to Cys813 enclosed by part of TM4 and the loop between TM5 and TM6. K(+) competitive imidazo-1,2alpha-pyridines also bind to the luminal surface of the E(2)-P conformation, and their binding excludes PPI reaction. This overlap of the binding sites of the two classes of inhibitors combined with the results of site-directed mutagenesis and cysteine cross-linking allowed preliminary assignment of a docking mode for these reversible compounds in a position close to Glu795 that accounts for the detailed structure/activity relationships known for these compounds. The new E(2)-P model is able to assign a possible mechanism for acid secretion by this P(2)-type ATPase. Several ion binding side chains identified in the sr Ca-ATPase by crystallography are conserved in the Na,K- and H,K-ATPases. Poised in the middle of these, the H,K-ATPase substitutes lysine in place of a serine implicated in K(+) binding in the Na,K-ATPase. Molecular models for hydronium binding to E(1) versus E(2)-P predict outward displacement of the hydronium bound between Asp824, Glu820, and Glu795 by the R-NH(3)(+) of Lys791 during the conformational transition from E(1)P and E(2)P. The site for luminal K(+) binding at low pH is proposed to be between carbonyl oxygens in the nonhelical part of the fourth membrane span and carboxyl oxygens of Glu795 and Glu820. This site of K(+) binding is predicted to destabilize hydrogen bonds between these carboxylates and the -NH(3)(+) group of Lys791, allowing the Lys791 side chain to return to its E(1) position.  相似文献   

12.
H Hebert  Y Xian  I Hacksell  S M?rdh 《FEBS letters》1992,299(2):159-162
Two-dimensional crystallization of membrane-bound H,K-ATPase (EC 3.6.1.36) in vesicle preparations from parietal cells of hog gastric mucosa was induced by an imidazole buffer containing Mg2+ and VO3- ions. A continuous reorganization of the protein molecules started within a few hours by the formation of linear arrays. At later stages confluent two-dimensional crystals were formed. Electron microscopy and image processing showed that these were of a single tetragonal type. The asymmetric unit consisted of one pear-shaped protein domain corresponding to a H,K-ATPase protomer. Through stain-deficient contact regions four adjacent protein units were connected forming a tetrameric structure.  相似文献   

13.
In this study we compared the protein kinase dependent regulation of gastric H,K-ATPase and Na,K-ATPase. The protein kinase A/protein kinase C (PKA/PKC) phosphorylation profile of H,K-ATPase was very similar to the one found in the Na,K-ATPase. PKC phosphorylation was taking place in the N-terminal part of the alpha-subunit with a stoichiometry of approximately 0.6 mol Pi/mole alpha-subunit. PKA phosphorylation was in the C-terminal part and required detergent, as is also found for the Na,K-ATPase. The stoichiometry of PKA-induced phosphorylation was approximately 0.7 mol Pi/mole alpha-subunit. Controlled proteolysis of the N-terminus abolished PKC phosphorylation of native H,K-ATPase. However, after detergent treatment additional C-terminal PKC sites became exposed located at the beginning of the M5M6 hairpin and at the cytoplasmic L89 loop close to the inner face of the plasma membrane. N-terminal PKC phosphorylation of native H,K-ATPase alpha-subunit was found to stimulate the maximal enzyme activity by 40-80% at saturating ATP, depending on pH. Thus, a direct modulation of enzyme activity by PKC phosphorylation could be demonstrated that may be additional to the well-known regulation of acid secretion by recruitment of H,K-ATPase to the apical membranes of the parietal cells. Moreover, a distinct difference in the regulation of H,K-ATPase and Na,K-ATPase is the apparent absence of any small regulatory proteins associated with the H,K-ATPase.  相似文献   

14.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

15.
cDNA cloning of the beta-subunit of the rat gastric H,K-ATPase   总被引:8,自引:0,他引:8  
A cDNA encoding the beta-subunit of the rat gastric H,K-ATPase has been identified using oligonucleotide probes based on the amino acid sequences of two peptides from the pig H,K-ATPase beta-subunit (Hall, K., Perez, G., Anderson, D., Gutierrez, C., Munson, K., Hersey, S. J., Kaplan, J. H., and Sachs, G. (1990) Biochemistry 29, 701-706). The nucleotide sequence of the 1.3-kilobase cDNA has been determined and the primary structure of the protein deduced. The protein consists of 294 amino acids and has an Mr of 33,625. The amino acid sequence of the H,K-ATPase beta-subunit is similar to those of the beta 1 (29% identity) and beta 2 (37% identity) subunits of the Na,K-ATPase. Based on the hydropathy profile it seems to have the same transmembrane organization as the Na,K-ATPase beta-subunit, with a single membrane-spanning domain near the amino terminus. Seven potential N-linked glycosylation sites are located in the putative extracellular regions of the protein. Northern blot analyses of poly(A)+ RNAs from 13 tissues demonstrate that the H,K-ATPase beta-subunit mRNA is expressed at high level in stomach and is not expressed in any of the other tissues.  相似文献   

16.
A highly purified membrane fraction of H,K-ATPase was isolated from hog gastric mucosa by using differential centrifugation, sodium dodecyl sulfate (SDS:0.125%) treatment and density-gradient centrifugation. The final fraction showed a major band at 97 kD by SDS-gel electrophoresis. This purified H,K-ATPase sedimented at the interface of a 28-35% sucrose step gradient and displayed a specific activity of 140-170 mumol Pi/h/mg protein and a ratio of K-stimulated ATPase activity to Mg-stimulated ATPase activity of 6.5-8.7. The apparent Km for ATP was 0.154 mM and the Km for K+ was o.6 mM. The enzymatic activity recovered from this purification procedure was K(+)-ionophore-independent. SDS treatment in the presence of 2.5 mM ATP did not change the kinetic properties of the isolated enzyme. Exclusion of ATP during SDS solubilization diminished the enzymatic activity by 90%, indicating that ATP protection is essential for the full recovery of enzymatic activity. In summary, mild SDS solubilization can be used to purify relatively large quantities of active H,K-ATPase to near homogeneity without altering the enzyme's kinetic properties.  相似文献   

17.
We have generated protein chimeras to investigate the role of the fourth transmembrane segments (TM4) of the Na,K- and gastric H, K-ATPases in determining the distinct cation selectivities of these two pumps. Based on a helical wheel analysis, three residues of TM4 of the Na,K-ATPase were changed to their H,K-counterparts. A construct carrying three mutations in TM4 (L319F, N326Y, and T340S) and two control constructs were heterologously expressed in Xenopus laevis oocytes and in the pig kidney epithelial cell line LLC-PK(1). Biochemical ATPase assays demonstrated a large sodium-independent ATPase activity at pH 6.0 for the pump carrying the TM4 substitutions, whereas the control constructs exhibited little or no activity in the absence of sodium. Furthermore, at pH 6.0 the K(1/2)(Na(+)) shifted to 1.5 mM for the TM4 construct compared with 9.4 and 5.9 mM for the controls. In contrast, at pH 7.5 all three constructs had characteristics similar to wild type Na,K-ATPase. Large increases in K(1/2)(K(+)) were observed for the TM4 construct compared with the control constructs both in two-electrode voltage clamp experiments in Xenopus oocytes and in ATPase assays. ATPase assays also revealed a 10-fold shift in vanadate sensitivity for the TM4 construct. Based on these findings, it appears that the three identified TM4 residues play an important role in determining both the specific cation selectivities and the E(1)/E(2) conformational equilibria of the Na,K- and H,K-ATPase.  相似文献   

18.
Site-mutations were introduced into putative cation binding site 1 of the H,K-ATPase at glu-797, thr-825, and glu-938. The side chain oxygen of each was not essential but the mutations produced different activation and inhibition kinetics. Site mutations thr-825 (ala, leu) and glu-938 (ala, gln) modestly decreased the apparent affinity to K+, while glu-797 (gln) was equivalent to wild type. As expected of competitive inhibition, mutations of thr-825 and glu-938 that decreased the apparent affinity for K+ also increased the apparent affinity for SCH28080. This is consistent with the participation of thr-825 and glu-938 in a cation binding domain. The sidechain geometry, but not the sidechain charge of glu-797, is essential to ATPase function as the site mutant glu-797 (gly) inactivated the H,K-ATPase, while glu-797 (gln) was active but the apparent affinity to SCH 28080 was decreased by four-fold. Lys-793, a unique residue of the H,K-ATPase, was essential for ATPase function. Since this residue is adjacent to site 1, the result suggests that charge pairing between lys-793 and residues at or near this site may be essential to ATPase function.  相似文献   

19.
Cross-linking and two-dimensional crystallization studies have suggested that the membrane-bound gastric H,K-ATPase might be a dimeric alpha,beta-heterodimer. Effects of an oligomeric structure on the characteristics of E(1), E(2), and phosphoenzyme conformations were examined by measuring binding stoichiometries of acid-stable phosphorylation (EP) from [gamma-(32)P]ATP or (32)P(i) or of binding of [gamma-(32)P]ATP and of a K(+)-competitive imidazonaphthyridine (INT) inhibitor to an enzyme preparation containing approximately 5 nmol of ATPase/mg of protein. At <10 microM MgATP, E(1)[ATP].Mg.(H(+)):E(2) is formed at a high-affinity site, and is then converted to E(1)P.Mg.(H(+)):E(2) and then to E(2)P.Mg:E(1) with luminal proton extrusion. Maximal acid-stable phosphorylation yielded 2.65 nmol/mg of protein. Luminal K(+)-dependent dephosphorylation returns this conformation to the E(1) form. At high MgATP concentrations (>0.1 mM), the oligomer forms E(2)P.Mg:E(1)[ATP].Mg.(H(+)). The sum of the levels of maximal EP formation and ATP binding was 5.3 nmol/mg. The maximal amount of [(3)H]INT bound was 2.6 nmol/mg in the presence of MgATP, Mg(2+), Mg-P(i), or Mg-vanadate with complete inhibition of activity. K(+) displaced INT only in nigericin-treated vesicles, and thus, INT binds to the luminal surface of the E(2) form. INT-bound enzyme also formed 2.6 nmol of EP/mg at high ATP concentrations by formation of E(2).Mg.(INT)(exo):E(1)[ATP].Mg.(H(+)) which is converted to E(2).Mg.(INT)(exo):E(1)P.Mg.(H(+))(cyto), but this E(1)P form was K(+)-insensitive. Binding of the inhibitor fixes half the oligomer in the E(2) form with full inhibition of activity, while the other half of the oligomer is able to form E(1)P only when the inhibitor is bound. It appears that the catalytic subunits of the oligomer during turnover in intact gastric vesicles are restricted to a reciprocal E(1):E(2) configuration.  相似文献   

20.
A full-length cDNA clone encoding the human gastric H,K-ATPase (EC 3.6.1.36)beta-subunit was isolated from a human gastric mucosal lambda gt10 library using oligonucleotide probes which were based on the cDNA sequence from rat and rabbit H,K-ATPase beta-subunits. The insert was 1407 bp in length and encoded a polypeptide of 291 amino acids with a MW = 33,367 Da. It exhibited 84.2%, 85.6% and 81.3% identity to the H,K-ATPase beta-subunits of rabbit, pig and rat, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号