首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the presence of high nutrient concentrations, most ponds located around Brussels (Belgium) show a considerable variation in turbidity. The importance of submerged macrophytes in maintaining the clear-water state requires identification of the main factors determining macrophyte abundance and diversity in ponds and small lakes. In this study, the inter-relationships between submerged macrophyte cover, fish abundance and turbidity were investigated in 13 eutrophic peri-urban ponds. Along a turbidity gradient, vegetation switched from dominance by Stoneworts (Chara and Nitella spp.) in the clearest ponds, to dominance by Potamogeton pectinatus in ponds with a slightly lower water transparency. Despite the presence of both P. pectinatus and Stoneworts in each of the vegetated ponds, only one became dominant. Only a very low abundance (around 20%) of submerged vegetation was found in ponds of intermediate turbidity, while macrophytes were absent in turbid ponds. Multi- and univariate analysis showed a marked difference in chemical, physical and biological properties between ponds deliberately used for fish stocking and ponds that were not. Macrophyte cover was significantly negatively correlated with turbidity and plankti-benthivorous fish abundance. No such correlation was observed with piscivorous fish abundance, except for pike that were associated with a charophyte vegetation in the study ponds. The strong relationship found between fish abundance and turbidity, its negative effect on submerged vegetation cover, and the importance of submerged vegetation in controlling phytoplankton abundance, should be taken into account when selecting ponds for fish stocking. It also suggests that the study ponds have a good potential for ecological quality restoration by biomanipulation.  相似文献   

2.
Summary A series of mesocosm experiments was performed to assess the effects on the plankton community of filter-feeding Sacramento blackfish (Cyprinidae; Orthodon microlepidotus). Phytoplankton size-frequency distribution, zooplankton abundance, primary production, potential secondary production, and nutrient concentrations were measured. Blackfish reduce numbers of both evasive and nonevasive zooplankton and large phytoplankton while enhancing nanoplankton densities. Blackfish also significantly increase primary production and potential secondary community production. Levels of dissolved inorganic phosphorus and ammonia-nitrogen also increase. The effects of blackfish are generally similar to those reported for other filter-feeding fish.  相似文献   

3.
SUMMARY. 1 During eutrophication of shallow lakes, communities of submerged plants are often replaced by dense phytoplankton populations, but the mechanism by which this occurs is obscure though often assumed to involve shading. 2. This paper introduces a series investigating this change and describes a system of experimental ponds which were variously fertilized with nitrogen and phosphorus, had fish added or removed, and had their submerged aquatic plants cleared or left intact. 3. Fertilization with phosphate and ammonium nitrate in quantities effectively greater than those in a series of lakes in the adjacent Norfolk Broads, which have lost their submerged plants, did not displace the plant populations. 4. Total phosphorus and soluble reactive phosphorus concentrations in the water did not increase much with increasing loading in the presence of submerged plants but did so if the plants were manually cleared. Ammonium and nitrate concentrations were kept low, despite large additions in both plant dominated and manually cleared ponds. 5. In the absence of fish there were modest increases in chlorophyll a concentrations with phosphorus loading in the presence or absence of submerged plants. The concentrations achieved, however, were much lower than anticipated probably because of grazing by large-bodied Cladocera. 6. Ponds dominated by plants continued to have low phytoplankton populations even when fish were stocked. Low fish survival in these ponds permitted grazing zooplankters to flourish. In ponds cleared of plants, however, there were significant relationships between cholorophyll a concentration with Daphnia biomass (inverse) and log stock of potentially zooplanktivorous fish (positive). There was a significant relationship between chlorophyll a and total phosphorus concentrations in the plant and cleared ponds in 1982 but only in the plant ponds in 1983. In all cases the phytoplankton communities were dominated by small, often flagellated, organisms.  相似文献   

4.
To understand the impact of young-of-the-year (YOY) fish on food web dynamics and water quality, we stocked larval walleye (9 mm TL) (Stizostedion vitreum) in six experimental ponds using two fish densities (10 and 50 fish m–3) with three replicates. At high fish density, the average abundances of cladocerans and copepods and the Secchi depth were lower whereas abundances of rotifers and algae, gross primary productivity (GPP), pH and total phosphorus concentration were higher than at low fish density. Fish impact on bacterial abundance, dissolved oxygen, nitrogen and phosphorus concentrations, however, was not significant. The within treatment measurements of all variables except GPP were significantly different over time. Our results indicate that YOY walleye predation at high density can affect plankton community by reducing large zooplankton biomass and water clarity, and increasing phytoplankton abundance. The impact of YOY piscivorous fish on plankton should be considered when biomanipulation is applied for improvement of water quality.  相似文献   

5.
6.
At the fish ponds under study the authors defined several types of plankton which have been frequently found during the season (April – October). These types are: Early-spring maximum of phytoplankton, Depression of phytoplankton, Bloom of Aphanizomenon, Maximum of Chlorococcales. The periods of “depression” seem to be typical for the managed carp ponds in the spring. They are characterized by the low density of rapidly reproducing algal populations (e. g. Cryptomonas) and by the dense populations of large cladocerans of the genus Daphnia. Chlorophyll in phytoplankton is less than 5μg/l, transparency is higher than 2 meters. Periods of the spring depression may be followed by the maxima of either Aphanizomenon or Chlorococcales, with concentrations of chlorophyll increasing to 100 μg/l and more. The change from the phase of “depression” to the “maximum of Chlorococcales” is accompanied by decrease in numbers of Daphnia and increase in numbers of the small cladoceran species, but all the mechanisms responsible for the transition are not yet fully understood.  相似文献   

7.
Gizzard shad (Dorosoma cepedianum), a filter feeding omnivore, can consume phytoplankton, zooplankton and detritus and is a common prey fish in U.S. water bodies. Because of their feeding habits and abundance, shad have the potential to affect primary productivity (and hence water quality) directly through phytoplankton grazing and indirectly through zooplankton grazing and nutrient recycling. To test the ability of shad to influence primary productivity, we conducted a 16-day enclosure study (in 2.36-m3 mesocosms) and a 3-year whole-pond manipulation in 2–5 ha earthen ponds. In the mesocosm experiment, shad reduced zooplankton density and indirectly enhanced chlorophyll a concentration, primary productivity, and photosynthetic efficiency (assimilation number). While shad did not affect total phytoplankton density in the mesocosms, the density of large phytoplankton was directly reduced with shad. Results from the pond study were not consistent as predicted. There were few changes in the zooplankton and phytoplankton communities in ponds with versus ponds without gizzard shad. One apparent difference from systems in which previous work had been conducted was the presence of high densities of a potential competitor (i.e., larval bluegill) in our ponds. We suggest that the presence of these extremely high larval bluegill densities (20–350 larval bluegill m–3; 3–700 times higher density than that of larval gizzard shad) led to the lack of differences between ponds with versus ponds without gizzard shad. That is, the influence of gizzard shad on zooplankton or phytoplankton was less than the influence of abundant bluegill larvae. Differences in systems across regions must be incorporated into our understanding of factors affecting trophic interactions in aquatic systems if we are to be able to manage these systems for both water quality and fisheries.  相似文献   

8.
9.
The relationship between invasions by two exotic fishes (Micropterus salmoides and Lepomis macrochirus) and species diversity in native fish communities was studied in 14 Japanese farm ponds. We found that mean number of species in native fish communities was three times higher in the ponds without the exotic fish than in the ponds with them. Further, negative relationships were observed between abundance of the two exotic fish and the total abundance of native fish communities. Our results suggest that invasions by the two exotic fish caused serious depletion of native fish communities, although another process can also be considered , that is, that ponds with poor native fish communities were prone to colonization by these exotic fish.  相似文献   

10.
The hypotheses that larval fish density may potentially affect phytoplankton abundance through regulating zooplankton community structure, and that fish effect may also depend on nutrient levels were tested experimentally in ponds with three densities of larval walleye, Stizostedion vitreum (0, 25, and 50 fish m–3), and two fertilizer types (inorganic vs organic fertilizer). A significant negative relationship between larval fish density and large zooplankton abundance was observed despite fertilizer types. Larval walleye significantly reduced the abundances of Daphnia, Bosmina, and Diaptomus but enhanced the abundance of various rotifer species (Brachionus, Polyarthra, and Keratella). When fish predation was excluded, Daphnia became dominant, but Daphnia grazing did not significantly suppress blue-green algae. Clearly, larval fish can be an important regulator for zooplankton community. Algal composition and abundance were affected more by fertilizer type than by fish density. Inorganic fertilizer with a high N:P ratio (20:1) enhanced blue-green algal blooms, while organic fertilizer with a lower N:P ratio (10:1) suppressed the abundance of blue-green algae. This result may be attributed to the high density of blue-green algae at the beginning of the experiment and the fertilizer type. Our data suggest that continuous release of nutrients from suspended organic fertilizer at a low rate may discourage the development of blue-green algae. Nutrient inputs at a low N:P ratio do not necessarily result in the dominance of blue-green algae.  相似文献   

11.
1. During recent decades, Gonyostomum semen populations have spread in northern temperate regions forming dense blooms that may dominate the phytoplankton assemblage for extended periods. In this study, we investigate the effects of G. semen blooms in boreal brown water lakes with special emphasis on phytoplankton, fish and benthic invertebrate assemblages using data from 10 boreal lakes sampled annually over a 10‐year period. 2. Significant differences in phytoplankton and benthic invertebrate assemblages were found between lakes with high (3.01 mm3 L?1; >80% phytoplankton biomass) and lakes with low G. semen biomass (0.03 mm3 L?1; <5% phytoplankton biomass). In particular, high G. semen lakes had lower biomass of smaller, edible phytoplankton and a higher abundance and biomass of benthic invertebrates, especially Chaoborus flavicans, and perch than low G. semen lakes. 3. The length distribution of fish also suggested a tendency towards large and older fish and a lower recruitment success in high G. semen lakes, as denoted by lower abundances of fish shorter than 10 cm and higher biomass and abundance of fish longer than 15 cm in high G. semen lakes. 4. This study shows that high G. semen lakes are characterised by less edible phytoplankton, dominance by a few species and enhanced benthic secondary and fish production. Hence, the conjecture that high biomasses of G. semen create a bottleneck in the energy transfer to higher trophic levels seems less likely in boreal lakes.  相似文献   

12.
Cottenie  Karl  Nuytten  Nele  Michels  Erik  De Meester  Luc 《Hydrobiologia》2001,442(1-3):339-350
We studied the zooplankton community structure in a set of 33 interconnected shallow ponds that are restricted to a relatively small area (`De Maten', Genk, Belgium, 200 ha). As the ponds share the same water source, geology and history, and as the ponds are interconnected (reducing chance effects of dispersal with colonisation), differences in zooplankton community structure can be attributed to local biotic and abiotic interactions. We studied zooplankton community, biotic (phytoplankton, macrophyte cover, fish densities, macroinvertebrate densities), abiotic (turbidity, nutrient concentrations, pH, conductivity, iron concentration) and morphometric (depth, area, perimeter) characteristics of the different ponds. Our results indicate that the ponds differ substantially in their zooplankton community structure, and that these differences are strongly related to differences in trophic structure and biotic interactions, in concordance with the theory of alternative equilibria. Ponds in the clear-water state are characterised by large Daphnia species and species associated with the littoral zone, low chlorophyll-a concentrations, low fish densities and high macroinvertebrate densities. Ponds in the turbid-water state are characterised by high abundances of rotifers, cyclopoid copepods and the opposite environmental conditions. Some ponds show an intermediate pattern, with a dominance of small Daphnia species. Our results show that interconnected ponds may differ strongly in zooplankton community composition, and that these differences are related to differences in predation intensity (top-down) and habitat diversity (macrophyte cover).  相似文献   

13.
Freshwater wetlands in Bangladesh are strongly influenced by the monsoons and the annual flood cycle has measurable impacts on the abiotic and biotic components of these ecosystems. The northeastern Haor Basin of Bangladesh is particularly rich in seasonally flooded freshwater wetlands that support a wide diversity of flora and fauna. These wetlands are of great importance to the local economy due to the abundance of rich floodplain fisheries. Little is known about the phytoplankton communities of these wetlands that are known to be linked with zooplankton and fish productivity. We investigated the seasonal variation in the diversity and abundance of phytoplankton assemblages in Tanguar Haor, a Ramsar wetland in northeastern Bangladesh during the period of inundation (June–December). A total of 107 genera of phytoplankton representing five classes were recorded. Blooms of Microcystis dominated the phytoplankton community throughout the study period but were particularly acute during the early part of the high water period. Among the Bacillariophyceae, Melosira was the most dominant, reaching bloom proportions early in the high water period. Factor analysis of physicochemical variables separated the flood cycle into four distinct periods: early high water, mid high water, late high water and low water periods. Phase of the flood cycle, nutrient availability, the physicochemical variables combined with the dominance of Microcystis seemed to be important in controlling the abundance, diversity and dynamics of the phytoplankton genera. The abundance of genera of desmids and some Bacillariophyceae is indicative of the relatively unpolluted conditions of Tanguar Haor.  相似文献   

14.
Although phosphorus fertilisation can improve productivity in most freshwater ponds, phosphate may become limiting in extremely hard water due to rapid precipitation with calcium. Hence we studied the characteristics of plankton and nutrient dynamics in water containing >400 mg CaCO3 l–1in pond and microcosm systems. The field experiment was conducted in eight earthen ponds involving two nutrient ratios (N:P = 1:1 and 20:1) with or without crayfish. Fertilisation significantly increased concentrations of NO2–N and NO3–N, but soluble reactive phosphorus was depleted to the level prior to fertilisation within 24 h. The laboratory test showed that after 6 h of fertilisation, 45% phosphorus was precipitated by calcium, 30% phosphorus was assimilated by phytoplankton and only 25% phosphorus remained in water column. The phytoplankton abundance in hardwater ponds was regulated by the abundance of zooplankton population rather than by either crayfish or fertilisation. The presence of crayfish only increased the concentration of total phosphorus. This study suggests that when phytoplankton production is required in crayfish ponds the maintenance of phytoplankton abundance will depend on the effective control of zooplankton rather than fertilisation. Due to the rapid precipitation of phosphorus by calcium in hard water ponds, more frequent phosphorus fertilisation is needed to enhance primary productivity.  相似文献   

15.
Microbial sulfate reduction and sulfur oxidation are vital processes to enhance organic matter degradation in sediments. However, the diversity and composition of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their environmental driving factors are still poorly understood in aquaculture ponds, which received mounting of organic matter. In this study, bacterial communities, SRB and SOB from sediments of aquaculture ponds with different sizes of grass carp (Ctenopharyngodon idellus) were analysed using high-throughput sequencing and quantitative real-time PCR (qPCR). The results indicated that microbial communities in aquaculture pond sediments of large juvenile fish showed the highest richness and abundance of SRB and SOB, potentially further enhancing microbial sulfur cycling. Specifically, SRB were dominated by Desulfobulbus and Desulfovibrio, whereas SOB were dominated by Dechloromonas and Leptothrix. Although large juvenile fish ponds had relatively lower concentrations of sulfur compounds (i.e. total sulfur, acid-volatile sulfide and elemental sulfur) than those of larval fish ponds, more abundant SRB and SOB were found in the large juvenile fish ponds. Further redundancy analysis (RDA) and linear regression indicated that sulfur compounds and sediment suspension are the major environmental factors shaping the abundance and community structure of SRB and SOB in aquaculture pond sediments. Findings of this study expand our current understanding of microbial driving sulfur cycling in aquaculture ecosystems and also provide novel insights for ecological and green aquaculture managements.  相似文献   

16.
Juvenile Nile tilapia (Oreochromis niloticus) are omnivorous, and the question asked in this study is how they affect on their environment? Do they mainly act as predators on the cladoceran zooplankton or do they compete with the cladocerans for phytoplankton? This problem was studied in three ponds with and three ponds without small tilapia (3–5 cm). The fish growth rate, the succession of plankton species and the changes in abiotic conditions, were monitored over a period of 67 days. The fish biomass was kept low and the mean was approximately constant (12.6 g m?2) during the experiment. Phosphate was added to avoid phytoplankton nutrient limitation. Although the diet of Nile tilapia contained both phytoplankton and zooplankton, the fish affected the ecosystem in a similar way as zooplanktivorous fish. The fish ponds got more phytoplankton due to increase of Chlorophyta. Effects on the other phytoplankton groups Euglenophyta, Bacillariophyta, Cryptophyta and Cyanophyta could not be registered. The ponds without fish had higher densities of Daphnia lumholtzi and D. barbata. The other Cladocerans seemed less influenced by fish presence. The relative fish growth rate was most positively correlated with the density of Daphnia lumholtzi, Diaphanosmoa excisum and Bosmina longirostris. Tilapia seemes to have two feeding modes: (1) preying on large zooplankton and (2) unselective filtration of small planktonic organisms such as phytoplankton. In our experiment the first feeding mode affected the ecosystem more than the second.  相似文献   

17.
Do the effects of piscivorous largemouth bass cascade to the plankton?   总被引:1,自引:1,他引:0  
Ecologists have hypothesized that an increase in the biomass of piscivorous fish in lakes will cause a decrease in populations of planktivorous fish, an increase in the size of herbivorous zooplankton and a decrease in the biomass of phytoplankton. Here we present an experimental test of whether the effects of largemouth bass (Micropterus salmoides) cascade to the planktivorous fish, zooplankton and phytoplankton of a 15-ha water storage reservoir. A pilot study indicated that the reservoir was eutrophic with dense populations of planktivorous fish dominated by threadfin shad (Dorosoma petenense). No piscovorous fish were present in the reservoir. We conducted a one-month mesocosm experiment using water and plankton from the reservoir showing that the presence of threadfin shad reduced large-sized zooplankton and increased the productivity and biomass of phytoplankton. To test whether the effects of piscivorous fish could cascade to the plankton, we assessed the effects of the addition of piscivorous largemouth bass on the planktivorous fish, zooplankton and biomass of phytoplankton of the reservoir by monitoring the reservoir during the year before and the two years after largemouth bass were stocked. In the second year after the addition of largemouth bass, the number of planktivorous fish decreased and the relative abundance of threadfin shad declined. Although the abundance of cladocerans increased after the addition of largemouth bass, the average size of zooplankton did not change. We did not detect changes in chlorophyll a, Secchi depth, or concentrations of total phosphorus and total nitrogen as a result of the addition of largemouth bass.  相似文献   

18.
The distribution of phyioplankton in a double-cell sewage lagoon at Hallam, Nebraska, was studied in relation to physical, chemical, and biological factors during the summer and fall of 1965. Sixteen species of algae were recorded in the first and more organically rich of the two physically similar ponds, with 28 species recorded in the second pond. Population sizes were always greater in the first pond due to reduced grazing during the summer and large quantities of ammonia-nitrogen during the fall. The dominant algal species in both ponds on nearly all sampling dates was Ankistrodesmus falcatus v. acicularis. Declines in this population occurred with high organic pollution and heavy grazing. Both ponds had severe reductions in algal numbers during late October due to heavy grazing by the rotifer Brachionus. The distribution of phytoplankton in the Hallam ponds is compared to that of other sewage ponds in the United States, and the general pattern which emerged is discussed.  相似文献   

19.
Benthic invertebrates mediate bottom–up and top–down influences in aquatic food webs, and changes in the abundance or traits of invertebrates can alter the strength of top–down effects. Studies assessing the role of invertebrate abundance and behavior as controls on food web structure are rare at the whole ecosystem scale. Here we use a comparative approach to investigate bottom–up and top–down influences on whole anchialine pond ecosystems in coastal Hawai‘i. In these ponds, a single species of endemic atyid shrimp (Halocaridina rubra) is believed to structure epilithon communities. Many Hawaiian anchialine ponds and their endemic fauna, however, have been greatly altered by bottom–up (increased nutrient enrichment) and top–down (introduced fish predators) disturbances from human development. We present the results of a survey of dissolved nutrient concentrations, epilithon biomass and composition, and H. rubra abundance and behavior in anchialine ponds with and without invasive predatory fish along a nutrient concentration gradient on the North Kona coast of Hawai‘i. We use linear models to assess 1) the effects of nutrient loading and fish introductions on pond food web structure and 2) the role of shrimp density and behavior in effecting that change. We find evidence for bottom–up food web control, in that nutrients were associated with increased epilithon biomass, autotrophy and nutrient content as well as increased abundance and size of H. rubra. We also find evidence for top–down control, as ponds with invasive predatory fish had higher epilithon biomass, productivity, and nutrient content. Top–down effects were transmitted by both altered H. rubra abundance, which changed the biomass of epilithon, and H. rubra behavior, which changed the composition of the epilithon. Our study extends experimental findings on bottom–up and top–down control to the whole ecosystem scale and finds evidence for qualitatively different effects of trait‐ and density‐mediated change in top–down influences.  相似文献   

20.
Aquatic predators and habitat permanence can jointly affect benthic invertebrate biomass and community composition. In 2006 I sampled fish and invertebrates in ten ponds embedded in a seasonal wetland before and after a natural drought. Drought reduced fish biomass and density leaving some ponds in a fishless condition when rains returned in July. In July, large aquatic insects and crayfish colonized and reproduced in the ponds, but did not colonize all of the ponds equally. Using measurements of fish abundance and other environmental parameters of the ponds, I conducted linear regression analyses to explore potential drivers of variable invertebrate biomass in July. Fish biomass had a negative effect on invertebrate biomass and it explained more of the variation in total invertebrate biomass and total non-shrimp biomass than fish abundance (number of fish caught). Dissolved oxygen and pond depth were both correlated with fish biomass, but were poorer predictors of invertebrate biomass. Ponds with few or no fish had 20× greater total biomass and 200× more non-shrimp biomass than ponds with high fish biomass. Shrimp dominated the invertebrate composition, and were only found in the two deepest ponds with the highest fish biomass; predatory insects and crayfish dominated the other eight ponds. When taxa were analyzed separately, fish biomass explained a large portion of the variation for predatory insects (Coleoptera, Hemiptera, and Odonata) and crayfish (Procambarus alleni), but dissolved oxygen was the best predictor of larval stratiomyid (order Diptera) biomass. These results are generally consistent with studies demonstrating negative effects of fish on large predatory invertebrates, but also suggest that more severe local droughts can seasonally enhance insect and crayfish populations by generating fishless or nearly fishless conditions. Handling editor: J. Trexler  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号