首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Degenerate oligonucleotides based on the published Escherichia coli glutamate decarboxylase (GAD) protein sequence were used in a polymerase chain reaction to generate a DNA probe for the E. coli GAD structural gene. Southern blots showed that there were two cross-hybridizing GAD genes, and both of these were cloned and sequenced. The two GAD structural genes, designated gadA and gadB, were found to be 98% similar at the nucleotide level. Each gene encoded a 466-residue polypeptide, named, respectively, GAD alpha and GAD beta, and these differed by only five amino acids. Both GAD alpha and GAD beta contain amino acid residues which are highly conserved among pyridoxal-dependent decarboxylases, but otherwise the protein sequences were not homologous to any other known proteins. By restriction mapping and hybridization to the Kohara miniset library, the two GAD genes were located on the E. coli chromosome. gadA maps at 4046 kb and gadB at 1588 kb. Neither of these positions is in agreement with the current map position for gadS as determined by genetic means. Analysis of Southern blots indicated that two GAD genes were present in all E. coli strains examined, including representatives from the ECOR collection. However, no significant cross-hybridizing gene was found in Salmonella species. Information about the DNA sequences and map positions of gadA and gadB should facilitate a genetic approach to elucidate the role of GAD in E. coli metabolism.  相似文献   

4.
5.
Control of Acid Resistance in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
Acid resistance (AR) in Escherichia coli is defined as the ability to withstand an acid challenge of pH 2.5 or less and is a trait generally restricted to stationary-phase cells. Earlier reports described three AR systems in E. coli. In the present study, the genetics and control of these three systems have been more clearly defined. Expression of the first AR system (designated the oxidative or glucose-repressed AR system) was previously shown to require the alternative sigma factor RpoS. Consistent with glucose repression, this system also proved to be dependent in many situations on the cyclic AMP receptor protein. The second AR system required the addition of arginine during pH 2.5 acid challenge, the structural gene for arginine decarboxylase (adiA), and the regulator cysB, confirming earlier reports. The third AR system required glutamate for protection at pH 2.5, one of two genes encoding glutamate decarboxylase (gadA or gadB), and the gene encoding the putative glutamate:gamma-aminobutyric acid antiporter (gadC). Only one of the two glutamate decarboxylases was needed for protection at pH 2.5. However, survival at pH 2 required both glutamate decarboxylase isozymes. Stationary phase and acid pH regulation of the gad genes proved separable. Stationary-phase induction of gadA and gadB required the alternative sigma factor sigmaS encoded by rpoS. However, acid induction of these enzymes, which was demonstrated to occur in exponential- and stationary-phase cells, proved to be sigmaS independent. Neither gad gene required the presence of volatile fatty acids for induction. The data also indicate that AR via the amino acid decarboxylase systems requires more than an inducible decarboxylase and antiporter. Another surprising finding was that the sigmaS-dependent oxidative system, originally thought to be acid induced, actually proved to be induced following entry into stationary phase regardless of the pH. However, an inhibitor produced at pH 8 somehow interferes with the activity of this system, giving the illusion of acid induction. The results also revealed that the AR system affording the most effective protection at pH 2 in complex medium (either Luria-Bertani broth or brain heart infusion broth plus 0.4% glucose) is the glutamate-dependent GAD system. Thus, E. coli possesses three overlapping acid survival systems whose various levels of control and differing requirements for activity ensure that at least one system will be available to protect the stationary-phase cell under naturally occurring acidic environments.  相似文献   

6.
An important feature of Escherichia coli pathogenesis is an ability to withstand extremely acidic environments of pH 2 or lower. This acid resistance property contributes to the low infectious dose of pathogenic E. coli species. One very efficient E. coli acid resistance system encompasses two isoforms of glutamate decarboxylase (gadA and gadB) and a putative glutamate:gamma-amino butyric acid (GABA) antiporter (gadC). The system is subject to complex controls that vary with growth media, growth phase, and growth pH. Previous work has revealed that the system is controlled by two sigma factors, two negative regulators (cyclic AMP receptor protein [CRP] and H-NS), and an AraC-like regulator called GadX. Earlier evidence suggested that the GadX protein acts both as a positive and negative regulator of the gadA and gadBC genes depending on environmental conditions. New data clarify this finding, revealing a collaborative regulation between GadX and another AraC-like regulator called GadW (previously YhiW). GadX and GadW are DNA binding proteins that form homodimers in vivo and are 42% homologous to each other. GadX activates expression of gadA and gadBC at any pH, while GadW inhibits GadX-dependent activation. Regulation of gadA and gadBC by either regulator requires an upstream, 20-bp GAD box sequence. Northern blot analysis further indicates that GadW represses expression of gadX. The results suggest a control circuit whereby GadW interacts with both the gadA and gadX promoters. GadW clearly represses gadX and, in situations where GadX is missing, activates gadA and gadBC. GadX, however, activates only gadA and gadBC expression. CRP also represses gadX expression. It does this primarily by repressing production of sigma S, the sigma factor responsible for gadX expression. In fact, the acid induction of gadA and gadBC observed when rich-medium cultures enter stationary phase corresponds to the acid induction of sigma S production. These complex control circuits impose tight rein over expression of the gadA and gadBC system yet provide flexibility for inducing acid resistance under many conditions that presage acid stress.  相似文献   

7.
The enzyme glutamate decarboxylase (GAD) is prevalent in Escherichia coli but few strains in the various pathogenic E. coli groups have been tested for GAD. Using PCR primers that amplify a 670-bp segment from the gadA and gadB genes encoding GAD, we examined the distribution of the gadAB genes among enteric bacteria. Analysis of 173 pathogenic E. coli strains, including 125 enterohemorrhagic E. coli isolates of the O157:H7 serotype and its phenotypic variants and 48 isolates of enteropathogenic E. coli, enterotoxigenic E. coli, enteroinvasive E. coli, and other Shiga toxin-producing E. coli (STEC) serotypes, showed that gadAB genes were present in all these strains. Among the 22 non-E. coli isolates tested, only the 6 Shigella spp. carried gadAB. Analysis of naturally contaminated water and food samples using a gadAB-specific DNA probe that was labeled with digoxigenin showed that a gadAB-based assay is as reliable as standard methods that enumerate E. coli organisms on the basis of lactose fermentation. The presence of few E. coli cells initially seeded into produce rinsates could be detected by PCR to gadA/B genes after overnight enrichment. A multiplex PCR assay using the gadAB primers in combination with primers to Shiga toxin (Stx) genes stx(1) and stx(2) was effective in detecting STEC from the enrichment medium after seeding produce rinsate samples with as few as 2 CFU. The gadAB primers may be multiplexed with primers to other trait virulence markers to specifically identify other pathogenic E. coli groups.  相似文献   

8.
9.
10.
11.
Examination of polymorphisms in the Plasmodium falciparum gene for falcipain 2 revealed that this gene is one of two paralogs separated by 10.8 kb in chromosome 11. We designate the annotated gene denoted chr11.gen_424 as encoding falcipain 2A and the annotated gene denoted chr11.gen_427 as encoding falcipain 2B. The paralogs are 96% identical at the nucleotide level and 93% identical at the amino acid level. The consensus sequences differ in 31/309 synonymous sites and 45/1140 nonsynonymous sites, including three amino acid replacements (V393I, A400P, and Q414E) that are near the catalytic site and that may affect substrate affinity or specificity. In six reference isolates, among 36 synonymous sites and 46 nonsynonymous sites that are polymorphic in the gene for falcipain 2A, falcipain 2B, or both, significant spatial clustering is observed. All but one of the polymorphisms appear to result from gene conversion between the paralogs. The estimated rate of gene conversion between the paralogs may be as many as 1,400 to 1,700 times greater than the rate of mutation. Owing to gene conversion, one of the falcipain 2A alleles is more similar to the falcipain 2B alleles than it is to other falcipain 2A alleles. Divergence among the synonymous sites suggests that the paralogous genes last shared a common ancestor 15.2 MYA, with a range of 8.8 to 20.6 MYA. During this period, the paralogs have acquired 0.10 synonymous substitutions per synonymous site in the coding region. The 5' and 3' flanking regions differ in 47.7% and 39.8% of the nucleotide sites, respectively. Hence synonymous sites and flanking regions are not conserved in sequence in spite of their high AT content and T skew.  相似文献   

12.
A bacterium originally described as Hafnia alvei induces diarrhea in rabbits and causes epithelial damage similar to the attachment and effacement associated with enteropathogenic Escherichia coli. Subsequent studies identified similar H. alvei-like strains that are positive for an intimin gene (eae) probe and, based on DNA relatedness, are classified as a distinct Escherichia species, Escherichia albertii. We determined sequences for multiple housekeeping genes in five E. albertii strains and compared these sequences to those of strains representing the major groups of pathogenic E. coli and Shigella. A comparison of 2,484 codon positions in 14 genes revealed that E. albertii strains differ, on average, at approximately 7.4% of the nucleotide sites from pathogenic E. coli strains and at 15.7% from Salmonella enterica serotype Typhimurium. Interestingly, E. albertii strains were found to be closely related to strains of Shigella boydii serotype 13 (Shigella B13), a distant relative of E. coli representing a divergent lineage in the genus Escherichia. Analysis of homologues of intimin (eae) revealed that the central conserved domains are similar in E. albertii and Shigella B13 and distinct from those of eae variants found in pathogenic E. coli. Sequence analysis of the cytolethal distending toxin gene cluster (cdt) also disclosed three allelic groups corresponding to E. albertii, Shigella B13, and a nontypeable isolate serologically related to S. boydii serotype 7. Based on the synonymous substitution rate, the E. albertii-Shigella B13 lineage is estimated to have split from an E. coli-like ancestor approximately 28 million years ago and formed a distinct evolutionary branch of enteric pathogens that has radiated into groups with distinct virulence properties.  相似文献   

13.
The expression of gadA and gadB, which encode two glutamate decarboxylases (GADs) of Escherichia coli, is induced by an acidic environment and participate in acid resistance. In this study, we constructed a polyamine-deficient mutant and investigated the role of polyamines in acid resistance. The expression of gadA and gadB was shown to be dependent on polyamines. For that reason, the polyamine-deficient mutant was completely devoid of GAD activity and was very susceptible to low pH if large amounts of polyamines were not provided. We also showed that the polyamine-deficient mutant contained higher cAMP levels than the isogenic polyamine-proficient wild type, and cAMP negatively regulated the expression of gadA and gadB. Therefore, introduction of the cya (encoding adenylate cyclase) mutation allele into the polyamine-deficient mutant resulted in the increment of GAD activity and thus restored the reduced acid resistance of the mutant. The positive regulators, H-NS (histone-like protein, encoded by the hns gene) and RpoS (alternative RNA polymerase sigma subunit, encoded by rpoS gene), also significantly governed the expression of gadA and gadB, respectively. However, polyamines did not regulate either the intracellular H-NS level or rpoS expression under these culture conditions. These results strongly suggest that there are at least two different regulatory systems in acid resistance, one is positive regulation via a H-NS/RpoS system and the other is negative regulation via a polyamine/cAMP system.  相似文献   

14.
15.
Morris RT  Drouin G 《Genomics》2008,92(3):168-172
We previously showed that gene conversions were more frequent in the genomes of three Escherichia coli pathogenic strains than in the genome of the nonpathogenic K-12 E. coli strain. However, that study did not address whether the more frequent conversions observed in the genes of pathogenic strains occurred between the backbone genes common to these four strains or in the numerous horizontally transferred genes found only in pathogenic strains. Here, we show that ectopic gene conversions are equally frequent in the backbone genes of pathogenic and nonpathogenic strains, that most of these conversions are short, and that the nucleotide changes they generate are probably selectively neutral. Backbone genes are therefore under similar selective constraints in both pathogenic and nonpathogenic E. coli strains. The higher frequency of gene conversions we previously observed in pathogenic strains is therefore due to higher conversion frequencies between the numerous horizontally transferred genes found only in pathogenic strains.  相似文献   

16.
The genes of the major histocompatibility complex (MHC) are a central component of the immune system in vertebrates and have become important markers of functional, fitness-related genetic variation. We have investigated the evolutionary processes that generate diversity at MHC class I genes in a large population of an archaic reptile species, the tuatara (Sphenodon punctatus), found on Stephens Island, Cook Strait, New Zealand. We identified at least 2 highly polymorphic (UA type) loci and one locus (UZ) exhibiting low polymorphism. The UZ locus is characterized by low nucleotide diversity and weak balancing selection and may be either a nonclassical class I gene or a pseudogene. In contrast, the UA-type alleles have high nucleotide diversity and show evidence of balancing selection at putative peptide-binding sites. Twenty-one different UA-type genotypes were identified among 26 individuals, suggesting that the Stephens Island population has high levels of MHC class I variation. UA-type allelic diversity is generated by a mixture of point mutation and gene conversion. As has been found in birds and fish, gene conversion obscures the genealogical relationships among alleles and prevents the assignment of alleles to loci. Our results suggest that the molecular mechanisms that underpin MHC evolution in nonmammals make locus-specific amplification impossible in some species.  相似文献   

17.
M Nenoi  K Mita  S Ichimura  A Kawano 《Genetics》1998,148(2):867-876
The polyubiquitin gene is an evolutionarily conserved eukaryotic gene, encoding tandemly repeated multiple ubiquitins, and is considered to be subject to concerted evolution. Here, we present the nucleotide sequences of new alleles of the polyubiquitin gene UbC in humans and CHUB2 in Chinese hamster, which encode a different number of ubiquitin units from those of previously reported genes. And we analyze the concerted evolution of these genes on the basis of their orthologous relationship. That the mean of the synonymous sequence difference Ks which is defined as the number of synonymous substitution relative to the total number of synonymous sites, within the UbC and CHUB2 genes (0.192 +/- 0.096) is significantly less than Ks between these genes (0.602 +/- 0.057) provides direct evidence for concerted evolution. Moreover, it also appears that concerted evolutionary events have been much more frequent in CHUB2 than in UbC, because Ks within CHUB2 (0.022 +/- 0.018) is much less than that within UbC (0.362 +/- 0.192). By a numerical simulation, postulating that the major mechanism of concerted evolution in polyubiquitin genes is unequal crossing over, we estimated the frequency of concerted evolutionary events of CHUB2 at 3.3 x 10(-5) per year and that of UbC at no more than 5.0 x 10(-7) per year.  相似文献   

18.
High fidelity replicative DNA polymerases can be blocked during DNA replication by various base damages, which represents a potentially lethal event. Escherichia coli possesses three DNA polymerases, PolII, PolIV and PolV, that can continue replication over such lesions in template DNA, thus allowing for cell survival. Genes coding for these enzymes, polB, dinB, and umuCD respectively, belong to the stress-inducible SOS regulon. We have analyzed the patterns of nucleotide sequence variability of genes encoding for three SOS polymerases from E. coli natural isolates in order to identify the nature of selective forces that determine their evolution. The frequency of inferred inter-strain recombination events, and the frequency of synonymous and non-synonymous base substitutions within these genes do not deviate significantly from those observed for the control group composed of 2 genes coding for DNA polymerases PolI and PolIII and 10 metabolic genes. This suggests that the loci coding for SOS polymerases are subject to selective pressure for the maintenance of their function and specificity. The fact that genes coding for translesion-synthesis (TLS) polymerases, particularly dinB and umuC homologs, have been conserved during evolution and the present analysis suggest that their activity is essential for the cellular survival and fitness.  相似文献   

19.
Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements.  相似文献   

20.
Fimbriae or pili are essential adherence factors usually found in pathogenic bacteria to aid colonization of host cells. Three major structural pilin genes, fimA, sfaA, and papA, from Escherichia coli natural isolates were examined and nucleotide sequence data revealed elevated levels of both synonymous and nonsynonymous site variation at these loci. Examination of synonymous site variation shows a fivefold increase in fimA sites, relative to the housekeeping gene mdh; and similarly the sfaA and papA genes have increased synonymous sites variation relative to fimA. Nonsynonymous site variation is also elevated at all three loci but, in particular, at the papA locus (k N= 0.44). The k N/k S ratio for the three genes are among the highest yet reported for E. coli genes. Regional variation in nucleotide polymorphism within each of the genes reveal hypervariable segments where nonsynonymous substitutions exceed synonymous substitutions. We propose that at the fimA, papA, and sfaA genes, diversifying selection has brought about the increase levels of polymorphism. Received: 7 August 1997 / Accepted: 8 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号