首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
肺癌是目前世界上最常见的恶性肿瘤之一,虽然近年来对其研究较多,但其发生发展的确切机制仍不清楚。DNA错配修复作为一种重要的复制后修复系统,在确保DNA复制保真性、控制基因突变和维持基因组稳定等方面具有重要作用。近年研究表明,DNA错配修复系统与肺癌的发生、治疗及预后判断有着密切关系。本文主要对DNA错配修复系统在肺癌中的研究进展作一简要综述。  相似文献   

2.
MNNG诱发的遗传不稳定vero细胞中错配修复功能的研究   总被引:4,自引:0,他引:4  
Gel retardation analysis and in vitro DNA mismatch repair system were used to examine whether there were mismatch repair deficiency in MNNG-induced genetically unstable vero cell, which was manifested by a delayed and highly increased rate of non-targeted mutation. A mismatch binding protein which could selectively bind to G.T mispair in DNA was identified in its whole-cell extracts. It was also identified that G.T mispair could be specifically and effectively corrected into G.C pair in its nuclear extracts. Compared with normal vero cell, there were no functional deficiency of the above mismatch repair mechanisms. So it could be excluded the possibility that the functional deficiency of mismatch binding protein or G.T mismatch repair pathway participated in the induction of genetic instability in vero cell by MNNG.  相似文献   

3.
错配修复(mismatch repair,MMR)是DNA复制后的一种修复机制,对维持基因组稳定起重要作用.错配修复基因功能缺陷是继癌基因激活、抑癌基因失活之后又一肿瘤的发生、发展机制,错配修复基因的异常表达与全身多种肿瘤相关.涎腺肿瘤为口腔颌面部常见肿瘤之一,具有与其他系统肿瘤相似的组织学类型,多来源于肌上皮.近年来,有关涎腺肿瘤与错配修复基因的关系正逐步成为研究热点,本文就错配修复基因的组成、作用机制以及与涎腺肿瘤发生、发展的关系作一综述.  相似文献   

4.
DNA错配修复系统研究进展   总被引:3,自引:0,他引:3  
DNA错配修复(mismatch repair, MMR)系统广泛存在于生物体中.从原核生物大肠杆菌到真核生物及人类,MMR系统有不同的组成成分和修复机制.人体内MMR基因缺陷会造成基因组的不稳定并诱发遗传性非息肉型直肠癌以及其他自发性肿瘤.大肠杆菌MMR系统中的MutS蛋白可特异识别错配或未配对碱基,目前已经发展了多种基于MutS蛋白的基因突变/多态性检测技术.  相似文献   

5.
DNA错配修复     
DNA错配修复*任庆虎张宗玉童坦君(北京医科大学生化与分子生物学系,北京100083)关键词错配修复遗传性非息肉型结直肠癌微卫星DNADNA错配修复基因(DNAmismatchrepairgene)首先在细菌和酵母中发现,最近在人类基因组中也找到了类...  相似文献   

6.
错配修复蛋白是DNA错配修复系统中主要功能蛋白质,主要参与DNA复制过程中对错配碱基的识别和修复.近年来研究表明错配修复蛋白还参与DNA损伤信号的传递、细胞周期的调控、减数分裂和有丝分裂等.错配修复蛋白缺陷会增加患肿瘤的危险性或者直接导致肿瘤;由于错配修复蛋白参与了DNA损伤信号传递、周期调控,错配修复蛋白缺陷还会导致细胞对相关抗癌药物产生耐受.  相似文献   

7.
李学璐  李芳 《中国微生态学杂志》2012,24(10):958-959,961
通过人类错配修复基因( hMLHl)启动子CpG岛甲基化与微卫星不稳定性(MSI)的分析,探讨癌症发病的机制.错配修复基因hMLH1启动子CpG岛甲基化是hMLH1基因失活的重要机制,而hMLH1的表达失活则可导致MSI的产生,促进癌症的发生.根据一系列研究得出结论,在肿瘤组织中hMLH1基因启动子CpG岛甲基化和微卫星不稳定(MSI)有显著相关性,并在癌症早期发生、发展过程中起重要作用.因此临床检测hMLH1基因启动子CpG岛甲基化及微卫星不稳定可能成为癌症鉴别诊断、评价预后、指导化疗的分子标志物之一.  相似文献   

8.
人类细胞减数分裂是精卵形成过程中的重要阶段。它包括染色体的一次复制 ,细胞的两次连续的分裂以及同源染色体配对、交换 ,同源染色体分离 ,姐妹染色单体分离等一系列复杂的过程。在细胞分裂进入中、后期时 ,如果其一对同源染色体或两姐妹染色单体未分别向两极移动 ,却同时进入一个子细胞中 ,结果细胞分裂所形成的两个子细胞中 ,一个将因染色体数目增多而形成超二倍体 ,一个则由于染色体数目减少而形成亚二倍体。这一过程称染色体不分离 (chromosomalnon -disjunction) ,从而引起配子中染色体数目异常 ,产生非整…  相似文献   

9.
染色体外环状DNA(extrachromosomal circular DNA,eccDNA)是存在于真核生物染色体外的环状DNA分子,由基因组中的DNA或细胞内的外源DNA形成.eccDNA是一类特殊的遗传物质,可以携带完整的基因,编码有功能的蛋白质或RNA.研究表明,eccDNA可以通过特殊的方式参与多种生理和病理...  相似文献   

10.
DNA错配修复与癌症的发生及治疗   总被引:3,自引:0,他引:3  
DNA错配修复是细胞复制后的一种修复机制,具有维持DNA复制保真度,控制基因变异的作用。DNA错配修复缺陷使整个基因组不稳定,最终会导致肿瘤和癌症的发生。DNA错配修复系统不仅通过矫正在DNA重组和复制过程中产生的碱基错配而保持基因组的稳定,而且通过诱导DNA损伤细胞的凋亡而消除由突变细胞生长形成的癌变。错配修复缺陷细胞的抗药性也引起了癌症化疗研究方面的关注。大多数情况下,错配修复健全型细胞对肿瘤化疗药物敏感,而错配修复缺陷细胞却有较高的抗性。DNA错配修复系统通过修复和诱导细胞凋亡维护基因组稳定的功能,显示了错配修复途径在癌症生物学和分子医学中的重要性。  相似文献   

11.
12.
DNA mismatch repair (MMR) is a DNA excision–resynthesis process that principally enhances replication fidelity. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologs initiate MMR and in higher eukaryotes act as DNA damage sensors that can trigger apoptosis. MSH proteins recognize mismatched nucleotides, whereas the MLH/PMS proteins mediate multiple interactions associated with downstream MMR events including strand discrimination and strand-specific excision that are initiated at a significant distance from the mismatch. Remarkably, the biophysical functions of the MLH/PMS proteins have been elusive for decades. Here we consider recent observations that have helped to define the mechanics of MLH/PMS proteins and their role in choreographing MMR. We highlight the stochastic nature of DNA interactions that have been visualized by single-molecule analysis and the plasticity of protein complexes that employ thermal diffusion to complete the progressions of MMR.  相似文献   

13.
W. Stephan  C. H. Langley 《Genetics》1992,132(2):567-574
Double strand breaks (DSBs) are often repaired via homologous recombination. Recombinational repair processes are expected to be influenced by nucleotide heterozygosity through mismatch detection systems. Unrepaired DSBs have severe biological consequences and are often lethal. We show that natural selection due to inhibition of recombinational repair associated with polymorphisms could influence their molecular evolution. The main conclusions from this analysis are that, for increasing population size, mismatch detection leads to a limit on average heterozygosity of otherwise selectively neutral polymorphism, an excess of rare variants, and a slowing down of the rate of neutral molecular evolution. The first two results suggest that mismatch detection may account for the surprisingly narrow range of observed average heterozygosities, given the great variation in population size between species.  相似文献   

14.
Mismatch Repair     
Highly conserved MutS homologs (MSH) and MutL homologs (MLH/PMS) are the fundamental components of mismatch repair (MMR). After decades of debate, it appears clear that the MSH proteins initiate MMR by recognizing a mismatch and forming multiple extremely stable ATP-bound sliding clamps that diffuse without hydrolysis along the adjacent DNA. The function(s) of MLH/PMS proteins is less clear, although they too bind ATP and are targeted to MMR by MSH sliding clamps. Structural analysis combined with recent real-time single molecule and cellular imaging technologies are providing new and detailed insight into the thermal-driven motions that animate the complete MMR mechanism.  相似文献   

15.
The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to >95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.  相似文献   

16.
17.
从DNA修复机理看细胞癌变的发生机制   总被引:3,自引:0,他引:3  
DNA损伤是引起基因突变,导致细胞恶性转化的重要原因.DNA损伤的修复过程非常复杂,是与细胞周期调节、DNA复制和DNA转录等生命活动紧密相连的.首先DNA修复需要细胞周期停滞,避免DNA损伤进入子代细胞.其次,参与DNA转录的某些基因产物参与DNA损伤的识别,有利于转录链的优先修复.最后,DNA修复系统NER、MMR参与损伤修复.上述DNA修复过程任何环节的异常,都将造成DNA修复功能减弱,导致某些功能基因突变,从而导致细胞的恶性转化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号