首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel type IV collagen, alpha 3(IV), has previously been isolated from a collagenase digest of bovine and human glomerular and lens basement membranes. The cloning and sequencing of a cDNA encoding the alpha 3(IV) chain is described here. Using the polymerase chain reaction, with primers derived from the known 27-residue bovine alpha 3(IV) amino acid sequence, a 68-base pair bovine genomic fragment (KEM68) which encodes the known peptide sequence, was synthesized. KEM68 was then used to screen a bovine lens cDNA library and a 1.5-kilobase partial cDNA clone obtained, encoding 471 residues of the bovine alpha 3(IV) chain: 238 residues from the triple helical collagenous domain and all 233 residues of the noncollagenous domain. The collagenous repeat sequence has three interruptions, coinciding with those in the alpha 1(IV) chain. The noncollagenous domain has 12 cysteine residues in identical positions to those of other type IV collagens and 71, 61, and 70% overall similarity with the human alpha 1(IV), alpha 2(IV), and alpha 5(IV) chains. The noncollagenous domain of alpha 3(IV) is of particular interest as it appears to be the component of glomerular basement membrane that reacts maximally with the Goodpasture antibody. Furthermore, such antigenicity is absent from collagenase digests of the glomerular basement membrane of some patients with Alport syndrome. The alpha 3(IV) cDNA clone described here now permits study of the molecular pathology of COL4A3 in Alport syndrome.  相似文献   

2.
The COOH-terminal non-collagenous domains (NC1) of type IV collagen from glomerular basement membranes (GBM), lens capsule basement membranes, and Descemet's membrane varied in the distribution of their NC1 subunits. All of these basement membranes (BMs) contained both classical (alpha 1(IV) and alpha 2(IV)) and novel collagen chains (alpha 3(IV), alpha 4(IV) and the Alport antigen). Whereas GBM had a predominance of disulfide-bonded subunits, the lens capsule and Descemet's membrane were primarily monomeric, differences that are likely related to the functional and structural diversity of collagen in various tissues. A heterodimer formed from monomeric subunits of alpha 3(IV) and the Alport antigen exists in human and bovine GBM. This dimer represents an important cross-link of the NC1 domain of novel collagen. Additionally, immunoaffinity methodology showed that the novel BM collagen hexamers segregate into populations containing only novel BM subunits without the participation of the classical subunits (alpha 1(IV) and alpha 2(IV)). These data provided evidence for the presence of two separate networks of BM collagen: one containing alpha 1(IV) and alpha 2(IV), and the other consisting of the novel collagen chains.  相似文献   

3.
Type IV collagen alpha1-alpha6 chains have important roles in the assembly of basement membranes and are implicated in the pathogenesis of Goodpasture syndrome, an autoimmune disorder, and Alport syndrome, a hereditary renal disease. We report comparative sequence analyses and structural predictions of the noncollagenous C-terminal globular NC1 domain (28 sequences). The inferred tree verified that type IV collagen sequences fall into two groups, alpha1-like and alpha2-like, and suggested that vertebrate alpha3/alpha4 sequences evolved before alpha1/alpha2 and alpha5/alpha6. About one fifth of NC1 residues were identified to confer either the alpha1 or alpha2 group-specificity. These residues accumulate opposite charge in subdomain B of alpha1 (positive) and alpha2 (negative) sequences and may play a role in the stoichiometric chain selection upon type IV collagen assembly. Neural network secondary structure prediction on multiple aligned sequences revealed a subdomain core structure consisting of six hydrophobic beta-strands and one short alpha-helix with a significant hydrophobic moment. The existence of opposite charges in the alpha-helices may carry implications for intersubdomain interactions. The results provide a rationale for defining the epitope that binds Goodpasture autoantibodies and a framework for understanding how certain NC1 mutations may lead to Alport syndrome. A search algorithm, based entirely on amino acid properties, yielded a possible similarity of NC1 to tissue inhibitor of metalloproteinases (TIMP) and prompted an investigation of a possible functional relationship. The results indicate that NC1 preparations decrease the activity of matrix metalloproteinases 2 and 3 (MMP-2, MMP-3) toward a peptide substrate, though not to [14C]-gelatin. We suggest that an ancestral NC1 may have been incorporated into type IV collagen as an evolutionarily mobile domain carrying proteinase inhibitor function.  相似文献   

4.
We describe a novel autoimmune disease characterized by severe subepidermal bullous eruptions and renal insufficiency with IgG autoantibodies directed against the NC1 domain of the alpha5(IV) collagen chain. In vivo deposits of IgG and C3 were found along the dermal-epidermal junction of skin lesions. The identity of the target antigen was determined by immunochemical analyses of candidate antigens using the patients' autoantibodies. The patients' IgG autoantibodies reacted with a 185-kDa polypeptide that was distinguished from the known autoantigens of the extracellular matrix including type XVII collagen, type VII collagen, or the alpha3, beta3, and gamma2 chains of laminin 5. Preincubation of the serum with recombinant alpha5(IV)NC1 domain of type IV collagen abolished immunoreactivity with the 185-kDa antigen. The serum reacted specifically with the alpha5(IV)NC1, among the six NC1 domains of type IV collagen, by Western blot and enzyme-linked immunosorbent assay analyses. The patients' autoantibodies reacted with normal skin and renal glomerulus but not with skin and glomerulus of a patient with Alport syndrome in which the basement membranes are devoid of the alpha5(IV) collagen chain. This study provided for the first time unambiguous evidence for the alpha5(IV) collagen chain as the target antigen in a novel autoimmune disease characterized by skin and renal involvement.  相似文献   

5.
Renal basement membranes are believed to contain five distinct type IV collagens. An understanding of the specific roles of these collagens and the specificities of their interactions will be aided by knowledge of their comparative structures. Genes for alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) have been cloned and the deduced peptide sequences compared. A fifth chain, alpha 4(IV), has been identified in glomerular and other basement membranes. Using a polymerase chain reaction-based strategy and short known peptide sequences from the noncollagenous domain (NC1), we have cloned and characterized partial bovine cDNAs of alpha 4(IV). Sequence analysis shows that this molecule has characteristic features of type IV collagens including an NH2-terminal Gly-X-Y domain which is interrupted at several points and a COOH-terminal NC1 domain with 12 cysteine residues in positions identical to those of other type IV collagens. Within the NC1 domain bovine alpha 4(IV) has 70, 59, 58, and 53% amino acid identity with human alpha 2(IV), alpha 1(IV), alpha 5(IV), and alpha 3(IV), respectively. Alignment of the peptides also shows that alpha 4(IV) is most closely related to alpha 2(IV). Nevertheless, in the extreme COOH-terminal region of the NC1 domain there are structural features that are unique to alpha 4(IV). Cloning of the region of alpha 4(IV) that encodes the NC1 domain allows comparison of all five type IV collagens and highlights certain regions that are likely to be important in the specificities of NC1-NC1 interactions and in other discriminant functions of these molecules.  相似文献   

6.
The ultrafiltration function of the glomerular basement membrane (GBM) of the kidney is impaired in genetic and acquired diseases that affect type IV collagen. The GBM is composed of five (alpha1 to alpha5) of the six chains of type IV collagen, organized into an alpha1.alpha2(IV) and an alpha3.alpha4.alpha5(IV) network. In Alport syndrome, mutations in any of the genes encoding the alpha3(IV), alpha4(IV), and alpha5(IV) chains cause the absence of the alpha3. alpha4.alpha5 network, which leads to progressive renal failure. In the present study, the molecular mechanism underlying the network defect was explored by further characterization of the chain organization and elucidation of the discriminatory interactions that govern network assembly. The existence of the two networks was further established by analysis of the hexameric complex of the noncollagenous (NC1) domains, and the alpha5 chain was shown to be linked to the alpha3 and alpha4 chains by interaction through their respective NC1 domains. The potential recognition function of the NC1 domains in network assembly was investigated by comparing the composition of native NC1 hexamers with hexamers that were dissociated and reconstituted in vitro and with hexamers assembled in vitro from purified alpha1-alpha5(IV) NC1 monomers. The results showed that NC1 monomers associate to form native-like hexamers characterized by two distinct populations, an alpha1.alpha2 and alpha3.alpha4.alpha5 heterohexamer. These findings indicate that the NC1 monomers contain recognition sequences for selection of chains and protomers that are sufficient to encode the assembly of the alpha1.alpha2 and alpha3.alpha4.alpha5 networks of GBM. Moreover, hexamer formation from the alpha3, alpha4, and alpha5 NC1 monomers required co-assembly of all three monomers, suggesting that mutations in the NC1 domain in Alport syndrome may disrupt the assembly of the alpha3.alpha4.alpha5 network by interfering with the assembly of the alpha3.alpha4.alpha5 NC1 hexamer.  相似文献   

7.
Alport syndrome is a mainly X-linked hereditary disease of basement membranes that is characterized by progressive renal failure, deafness, and ocular lesions. It is associated with mutations of the COL4A5 gene located at Xq22 and encoding the alpha5 chain of type IV collagen. We have screened 48 of the 51 exons of the COL4A5 gene by SSCP analysis and have identified 64 mutations and 10 sequence variants among 131 unrelated Alport syndrome patients. This represents a mutation-detection rate of 50%. There were no hot-spot mutations and no recurrent mutations in our population. The identified mutations were 6 nonsense mutations, 12 frameshift mutations, 17 splice-site mutations, and 29 missense mutations, 27 of the latter being glycine substitutions in the collagenous domain. Two of these occurred on the same allele in one patient and segregated with the disease in the family. We showed that some of the glycine substitutions could be associated with the lack of immunological expression of the alpha3(IV)-alpha5(IV) collagen chains in the glomerular basement membrane.  相似文献   

8.
Type IV collagen is a major structural component of basement membranes. Four constituent polypeptides have been described and characterized to different degrees. Whereas the primary structure of the alpha 1(IV) and alpha 2(IV) chains has been completely established, only short protein sequences have been reported for the recently recognized alpha 3(IV) and alpha 4(IV) subunits. We have isolated overlapping human cDNA clones whose derived amino acid sequence is highly homologous to the alpha 1(IV) and alpha 2(IV) chains. However, these clones code for neither alpha 3(IV) nor alpha 4(IV), and thus this new polypeptide has been designated the alpha 5 chain of type IV collagen. To determine whether the gene encoding the alpha 5(IV) chain is syntenic with the contiguously arranged alpha 1(IV) and alpha 2(IV) genes at 13q34, the alpha 5(IV) cloned DNA was hybridized to genomic DNA from somatic cell hybrids and to metaphase chromosomes. The results demonstrated that the alpha 5(IV) collagen gene is located on the long arm of the X chromosome. Since 14 collagen genes have previously been assigned to nine autosomes, these data represent the first mapping of a collagen gene to the X chromosome. Most important, the alpha 5(IV) gene has been sublocalized to bands Xq22----q23, which are in the same region known to contain the locus for the X-linked form of Alport syndrome. It is therefore possible that this severe dominantly inherited nephritis, manifested by splitting of the glomerular basement membrane, could be caused by mutations in the alpha 5(IV) collagen gene.  相似文献   

9.
Defective assembly of alpha 3 alpha 4 alpha 5(IV) collagen in the glomerular basement membrane causes Alport syndrome, a hereditary glomerulonephritis progressing to end-stage kidney failure. Assembly of collagen IV chains into heterotrimeric molecules and networks is driven by their noncollagenous (NC1) domains, but the sites encoding the specificity of these interactions are not known. To identify the sites directing quaternary assembly of alpha 3 alpha 4 alpha 5(IV) collagen, correctly folded NC1 chimeras were produced, and their interactions with other NC1 monomers were evaluated. All alpha1/alpha 5 chimeras containing alpha 5 NC1 residues 188-227 replicated the ability of alpha 5 NC1 to bind to alpha3NC1 and co-assemble into NC1 hexamers. Conversely, substitution of alpha 5 NC1 residues 188-227 by alpha1NC1 abolished these quaternary interactions. The amino-terminal 58 residues of alpha3NC1 encoded binding to alpha 5 NC1, but this interaction was not sufficient for hexamer co-assembly. Because alpha 5 NC1 residues 188-227 are necessary and sufficient for assembly into alpha 3 alpha 4 alpha 5 NC1 hexamers, whereas the immunodominant alloantigenic sites of alpha 5 NC1 do not encode specific quaternary interactions, the findings provide a basis for the rational design of less immunogenic alpha 5(IV) collagen constructs for the gene therapy of X-linked Alport patients.  相似文献   

10.
We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E.-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue.  相似文献   

11.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

12.
The organizational relationship between the recently identified alpha 3 chain of basement membrane collagen (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B.G. (1987) J. Biol. Chem. 262, 7874-7877) and collagen IV was determined. This was accomplished by the identification of subunits in hexamers of the NC1 domain of collagen IV that were immunoprecipitated with antibodies prepared against subunits M1, corresponding to alpha 1(IV)NC1 and alpha 2(IV)NC1, and M2, corresponding to alpha 3NC1, and by amino acid sequence analysis. The presence of at least two distinct types of hexamers was revealed, one enriched in M1 and the other enriched in M2, but in both types, M1 and M2 coexist. Evidence was also obtained for the existence of heterodimers comprised of M1 and M2. These results indicate that M2 is an integral component of the NC1 hexamer of collagen IV. The amino acid sequence of the NH2-terminal region of M2 was found to be highly related to the collagenous-NC1 junctional region of the alpha 1 chain of collagen IV. Therefore, M2 is designated alpha 3(IV)NC1 and its parent chain alpha 3(IV). These findings lead to a new concept about the structure of collagen IV: namely, 1) collagen IV is comprised of a third chain (alpha 3) together with the two classical ones (alpha 1 and alpha 2); the alpha 3(IV) chain exists within the same triple-helical molecule together with the alpha 1(IV) and alpha 2(IV) chains and/or within a separate triple-helical molecule, exclusive of alpha 1(IV) and alpha 2(IV) chains, but connected through the NC1 domains to the classical triple-helical molecule comprised of alpha 1(IV) and alpha 2(IV) chains. Additionally, a portion of those triple-helical molecules exclusive of alpha 1(IV) and alpha 2(IV) chains may be connected to each other through their NC1 domains; and 3) the epitope to which the major reactivity of autoantibodies are targeted in glomerular basement membrane in patients with Goodpasture syndrome is localized to the NC1 domain of the alpha 3(IV) chain.  相似文献   

13.
We cloned three overlapping cDNAs covering 2,452 base pairs encoding a new basement membrane collagen chain, alpha 4(IV), from rabbit corneal endothelial cell RNA. Nucleotide sequence analysis demonstrated that the clones encoded a triple-helical domain of 392 1/3 amino acid residues and a carboxyl non-triple-helical (NC1) domain of 231 residues. We also isolated a genomic DNA fragment for the human alpha 4(IV) chain, which contained two exons encoding from the carboxyl end of the triple-helical domain to the amino end of the NC1 domain. Identification of the clones was based on the amino acid sequence identity between the cDNA-deduced amino acid sequence and the reported amino acid sequence obtained from a fragment of the alpha 4(IV) collagen polypeptide M28+ (Butkowski, R. J., Shen, G.-Q., Wieslander, J., Michael, A. F., and Fish, A. J. (1990) J. Lab. Clin. Med. 115, 365-373). When compared with four other type IV collagen chains, the NC1 domain contained 12 cysteinyl residues in positions identical to those of the residues in those chains. The domain demonstrated 61, 70, 55, and 60% amino acid similarity with human alpha 1, human alpha 2, bovine alpha 3, and human alpha 5 chains, respectively. The human genomic DNA fragment allowed us to map the alpha 4(IV) gene (COL4A4) to the 2q35-2q37.1 region of the human genome.  相似文献   

14.
《The Journal of cell biology》1995,130(5):1219-1229
Genes for the human alpha 5(IV) and alpha 6(IV) collagen chains have a unique arrangement in that they are colocalized on chromosome Xq22 in a head-to-head fashion and appear to share a common bidirectional promoter. In addition we reported a novel observation that the COL4A6 gene is transcribed from two alternative promoters in a tissue-specific manner (Sugimoto, M., T. Oohashi, and Y. Ninomiya. 1994. Proc. Natl. Acad. Sci. USA. 91:11679-11683). To know whether the translation products of both genes are colocalized in various tissues, we raised alpha 5(IV) and alpha 6(IV) chain-specific rat monoclonal antibodies against synthetic peptides reflecting sequences near the carboxy terminus of each noncollagenous (NC)1 domain. By Western blotting alpha 6(IV) chain-specific antibody recognized 27-kD monomers and associated dimers of the human type IV collagen NC1 domain, which is the first demonstration of the presence in tissues of the alpha 6(IV) polypeptide as predicted from its cDNA sequence. Immunofluorescence studies using anti-alpha 6(IV) antibody demonstrated that in human adult kidney the alpha 6(IV) chain was never detected in the glomerular basement membrane, whereas the basement membranes of the Bowman's capsules and distal tubules were positive. The staining pattern of the glomerular basement membrane was quite different from that obtained with the anti- alpha 5(IV) peptide antibody. The alpha 5(IV) and alpha 6(IV) chains were colocalized in the basement membrane in the skin, smooth muscle cells, and adipocytes; however, little if any reaction was seen in basement membranes of cardiac muscles and hepatic sinusoidal endothelial cells. Thus, both genes are expressed in a tissue-specific manner, perhaps due to the unique function of the bidirectional promoter for both genes, which is presumably different from that for COL4A1 and COL4A2.  相似文献   

15.
Anti-glomerular basement membrane (GBM) antibody nephritis is caused by an autoimmune or alloimmune reaction to the NC1 domains of alpha3alpha4alpha5(IV) collagen. Some patients with X-linked Alport syndrome (XLAS) develop post-transplant nephritis mediated by pathogenic anti-GBM alloantibodies to collagen IV chains present in the renal allograft but absent from the tissues of the patient. In this work, the epitopes targeted by alloantibodies from these patients were identified and characterized. All XLAS alloantibodies recognized conformational epitopes in the NC1 domain of alpha5(IV) collagen, which were mapped using chimeric alpha1/alpha5 NC1 domains expressed in mammalian cells. Allograft-eluted alloantibodies mainly targeted two conformational alloepitopes mapping to alpha5NC1 residues 1-45 and 114-168. These regions also encompassed the major epitopes of circulating XLAS alloantibodies, which in some patients additionally targeted alpha5NC1 residues 169-229. Both kidney-eluted and circulating alloantibodies to alpha5NC1 distinctively targeted epitopes accessible in the alpha3alpha4alpha5NC1 hexamers of human GBM, unlike anti-GBM autoantibodies, which targeted sequestered alpha3NC1 epitopes. The results identify two immunodominant alpha5NC1 epitopes as major alloantigenic sites of alpha3alpha4alpha5(IV) collagen specifically implicated in the pathogenesis of post-transplant nephritis in XLAS patients. The contrast between the accessibility of these alloepitopes and the crypticity of autoepitopes indicates that distinct molecular forms of antigen may initiate the immunopathogenic processes in the two forms of anti-GBM disease.  相似文献   

16.
We have identified a point mutation in the type IV collagen alpha 5 chain gene (COL4A5) in Alport syndrome. Variant PstI (Barker et al., 1990, Science 248, 1224-1227), and BglII restriction sites with complete linkage with the Alport phenotype have been found in the 3' end of the COL4A5 gene in the large Utah Kindred P. The approximate location of the variant sites was determined by restriction enzyme mapping, after which this region of the gene (1028 bp) was amplified with the polymerase chain reaction (PCR) from DNA of normal and affected individuals for sequencing analysis. The PCR products showed the absence or presence of the variant PstI and BglII sites in DNA from normal and affected individuals, respectively. DNA sequencing revealed a single base change in exon 3 (from the 3' end) in DNA from affected individuals, changing the TGT codon of cysteine to the TCT codon for serine. This single base mutation also generated new restriction sites for PstI and BglII. The mutation involves a cysteine residue that has remained conserved in the carboxyl-end noncollagenous domain (NC domain) of all known type IV collagen alpha chains from Drosophila to man. It is presumably crucial for maintaining the right conformation of the NC domain, which is important for both triple-helix formation and the formation of intermolecular cross-links of type IV collagen molecules.  相似文献   

17.
Type IV collagen includes six genetically distinct polypeptides named alpha1(IV) through alpha6(IV). These isoforms are speculated to organize themselves into unique networks providing mammalian basement membranes specificity and inequality. Recent studies using bovine and human glomerular and testis basement membranes have shown that unique networks of collagen comprising either alpha1 and alpha2 chains or alpha3, alpha4, and alpha5 chains can be identified. These studies have suggested that assembly of alpha5 chain into type IV collagen network is dependent on alpha3 expression where both chains are normally present in the tissue. In the present study, we show that in the lens and inner ear of normal mice, expression of alpha1, alpha2, alpha3, alpha4, and alpha5 chains of type IV collagen can be detected using alpha chain-specific antibodies. In the alpha3(IV) collagen-deficient mice, only the expression of alpha1, alpha2, and alpha5 chains of type IV collagen was detectable. The non-collagenous 1 domain of alpha5 chain was associated with alpha1 in the non-collagenous 1 domain hexamer structure, suggesting that network incorporation of alpha5 is possible in the absence of the alpha3 chain in these tissues. The present study proves that expression of alpha5 is not dependent on the expression of alpha3 chain in these tissues and that alpha5 chain can assemble into basement membranes in the absence of alpha3 chain. These findings support the notion that type IV collagen assembly may be regulated by tissue-specific factors.  相似文献   

18.
The noncollagenous (NC1) domain hexamer of glomerular basement membrane (GBM) collagen is composed of a multiplicity of monomeric and dimeric subunits, and specific subunits are the targets for anti-GBM autoantibodies of patients with Goodpasture (GP) syndrome. The identity of GBM monomers has been established and the alpha 3(IV)NC1 monomer identified as the one that binds GP antibodies (Gunwar, S., Saus, J., Noelken, M. E., and Hudson, B. G. (1990) J. Biol. Chem. 265, 5466-5469). In the present study, the chain origin of 25 dimeric components and the identity of those that bound the anti-GBM antibodies from two GP patients were determined. This was accomplished by NH2-terminal sequence analysis and immunoblotting analysis of dimeric components that were resolved by two-dimensional electrophoresis in combination with high pressure liquid chromatography. The results revealed that (a) the components are mainly homodimers of the NC1 domains of alpha 1, alpha 2, alpha 3, alpha 4, and probably alpha 5 chains of collagen IV, reflecting a specificity of promoter-promoter association and (b) each homodimer had several size and charge isoforms. The GP antibodies bound exclusively to both alpha 3(IV)NC1 monomers and dimers and not to other basement membrane constituents. These findings provided new insights about the structure of GBM collagen and together with our previous findings firmly established the alpha 3(IV) chain as the target for the anti-GBM antibodies that mediate glomerulonephritis and pulmonary hemorrhage in patients with Goodpasture syndrome.  相似文献   

19.
The Goodpasture antigen has been identified as the non-collagenous (NC1) domain of alpha 3(IV), a novel collagen IV chain (Saus, J., Wieslander, J., Langeveld, J., Quinones, S., and Hudson, B.G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, the exon/intron structure and sequence for 285 amino acids of human alpha 3(IV), comprising 53 amino acids of the triple-helical domain and the complete NC1 domain (232 amino acids), were determined. Based on the comparison of the amino acid sequences of the alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) NC1 domains, a phylogenetic tree was constructed which indicates that alpha 2(IV) was the first chain to evolve, followed by alpha 3(IV), and then by alpha 1(IV) and alpha 5(IV). The exon/intron structure of these domains is consistent with this evolution model. In addition, it appears that alpha 3(IV) changed most after diverging from the parental gene. Analysis of its primary structure reveals that, at the junction between the triple-helical and NC1 domains, there exists a previously unrecognized, highly hydrophilic region (GLKGKRGDSGSPATWTTR) which is unique to the human alpha 3(IV) chain, containing a cell adhesion motif (RGD) as an integral part of a sequence (KRGDSGSP) conforming to a number of protein kinase recognition sites. Based on primary structure data, we outline new aspects to be explored concerning the molecular basis of collagen IV function and Goodpasture syndrome.  相似文献   

20.
Goodpasture (GP) disease is an autoimmune disorder in which autoantibodies against the alpha3(IV) chain of type IV collagen bind to the glomerular and alveolar basement membranes, causing progressive glomerulonephritis and pulmonary hemorrhage. Two major conformational epitope regions have been identified on the noncollagenous domain of type IV collagen (NC1 domain) of the alpha3(IV) chain as residues 17-31 (E(A)) and 127-141 (E(B)) (Netzer, K.-O. et al. (1999) J. Biol. Chem. 274, 11267-11274). To determine whether these regions are two distinct epitopes or form a single epitope, three GP sera were fractionated by affinity chromatography on immobilized NC1 chimeras containing the E(A) and/or the E(B) region. Four subpopulations of GP antibodies with distinct epitope specificity for the alpha3(IV)NC1 domain were thus separated and characterized. They were designated GP(A), GP(B), GP(AB), and GP(X), to reflect their reactivity with E(A) only, E(B) only, both regions, and neither, respectively. Hence, regions E(A) and E(B) encompass critical amino acids that constitute three distinct epitopes for GP(A), GP(B), and GP(AB) antibodies, respectively, whereas the epitope for GP(X) antibodies is located in a different unknown region. The GP(A) antibodies were consistently immunodominant, accounting for 60-65% of the total immunoreactivity to alpha3(IV)NC1; thus, they probably play a major role in pathogenesis. Regions E(A) and E(B) are held in close proximity because they jointly form the epitope for Mab3, a monoclonal antibody that competes for binding with GP autoantibodies. All GP epitopes are sequestered in the hexamer configuration of the NC1 domain found in tissues and are inaccessible for antibody binding unless dissociation of the hexamer occurs, suggesting a possible mechanism for etiology of GP disease. GP antibodies have the capacity to extract alpha3(IV)NC1 monomers, but not dimers, from native human glomerular basement membrane hexamers, a property that may be of fundamental importance for the pathogenesis of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号