首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation of 1,2,4-trichlorobenzene (1,2,4-TCB) at initial concentrations in nano- and micromolar ranges was studied in batch experiments with Burkholderia sp. strain PS14. 1,2,4-TCB was metabolized from nano- and micromolar concentrations to below its detection limit of 0.5 nM. At low initial 1,2,4-TCB concentrations, a first-order relationship between specific transformation rate and substrate concentration was observed with a specific affinity (a0A) of 0.32 liter · mg (dry weight)−1 · h−1 followed by a second one at higher concentrations with an aoA of 0.77 liter · mg (dry weight)−1 · h−1. This transition from the first-order kinetics at low initial 1,2,4-TCB concentrations to the second first-order kinetics at higher 1,2,4-TCB concentrations was shifted towards higher initial 1,2,4-TCB concentrations with increasing cell mass. At high initial concentrations of 1,2,4-TCB, a maximal transformation rate of approximately 37 nmol · min−1 · mg (dry weight)−1 was measured, irrespective of the cell concentration.  相似文献   

2.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

3.
Kinetics of Perchlorate- and Chlorate-Respiring Bacteria   总被引:3,自引:2,他引:3       下载免费PDF全文
Ten chlorate-respiring bacteria were isolated from wastewater and a perchlorate-degrading bioreactor. Eight of the isolates were able to degrade perchlorate, and all isolates used oxygen and chlorate as terminal electron acceptors. The growth kinetics of two perchlorate-degrading isolates, designated “Dechlorosoma” sp. strains KJ and PDX, were examined with acetate as the electron donor in batch tests. The maximum observed aerobic growth rates of KJ and PDX (0.27 and 0.28 h−1, respectively) were only slightly higher than the anoxic growth rates obtained by these isolates during growth with chlorate (0.26 and 0.21 h−1, respectively). The maximum observed growth rates of the two non-perchlorate-utilizing isolates (PDA and PDB) were much higher under aerobic conditions (0.64 and 0.41 h−1, respectively) than under anoxic (chlorate-reducing) conditions (0.18 and 0.21 h−1, respectively). The maximum growth rates of PDX on perchlorate and chlorate were identical (0.21 h−1) and exceeded that of strain KJ on perchlorate (0.14 h−1). Growth of one isolate (PDX) was more rapid on acetate than on lactate. There were substantial differences in the half-saturation constants measured for anoxic growth of isolates on acetate with excess perchlorate (470 mg/liter for KJ and 45 mg/liter for PDX). Biomass yields (grams of cells per gram of acetate) for strain KJ were not statistically different in the presence of the electron acceptors oxygen (0.46 ± 0.07 [n = 7]), chlorate (0.44 ± 0.05 [n = 7]), and perchlorate (0.50 ± 0.08 [n = 7]). These studies provide evidence that facultative microorganisms with the capability for perchlorate and chlorate respiration exist, that not all chlorate-respiring microorganisms are capable of anoxic growth on perchlorate, and that isolates have dissimilar growth kinetics using different electron donors and acceptors.  相似文献   

4.
We report pyruvate formation in Escherichia coli strain ALS929 containing mutations in the aceEF, pfl, poxB, pps, and ldhA genes which encode, respectively, the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, phosphoenolpyruvate synthase, and lactate dehydrogenase. The glycolytic rate and pyruvate productivity were compared using glucose-, acetate-, nitrogen-, or phosphorus-limited chemostats at a growth rate of 0.15 h−1. Of these four nutrient limitation conditions, growth under acetate limitation resulted in the highest glycolytic flux (1.60 g/g · h), pyruvate formation rate (1.11 g/g · h), and pyruvate yield (0.70 g/g). Additional mutations in atpFH and arcA (strain ALS1059) further elevated the steady-state glycolytic flux to 2.38 g/g · h in an acetate-limited chemostat, with heterologous NADH oxidase expression causing only modest additional improvement. A fed-batch process with strain ALS1059 using defined medium with 5 mM betaine as osmoprotectant and an exponential feeding rate of 0.15 h−1 achieved 90 g/liter pyruvate, with an overall productivity of 2.1 g/liter · h and yield of 0.68 g/g.  相似文献   

5.
To facilitate predictions of the transport and fate of contaminants at future coal conversion facilities, rates of microbial transformation of polycyclic aromatic hydrocarbons were measured in stream water and sediment samples collected in the vicinity of a coal-coking treated wastewater discharge from November 1977 through August 1979. Six radiolabeled polycyclic aromatic hydrocarbons were incubated with sediment and water samples; 14CO2, cell-bound 14C, and polar transformation products were isolated and quantified. Whereas 14CO2 and bound 14C were major transformation products in sediment assays, soluble polar 14C dominated transformation in water samples. Mean rate constants (measured at 20°C) in sediments collected downstream from the effluent outfall were 7.8 × 10−2 h−1 (naphthalene), 1.6 × 10−2 h−1 (anthracene), and 3.3 × 10−3 h−1 [benz(a)anthracene], which corresponded to turnover times of 13, 62, and 300 h, respectively. No unequivocal evidence for transformation of benzo(a)pyrene or dibenz(a,h)anthracene was obtained. Only naphthalene and anthracene transformations were observed in water samples; rate constants were consistently 5- and 20-fold lower, respectively, than in the corresponding sediment samples. The measured rate constants for anthracene transformation in July 1978 sediment samples were not related to total heterotroph numbers. In late July 1978, the effluent was diverted from the primary study area; however, no differences were observed either in transformation rate constants or in the downstream/upstream sediment rate constant ratio. These results are consistent with the hypothesis that continuous inputs of polycyclic aromatic hydrocarbons result in an increased ability within a microbial community to utilize certain polycyclic aromatic hydrocarbons. However, because transformation rates remained elevated for more than 1 year after removal of the polycyclic aromatic hydrocarbon source, microbial communities may shift only slowly in response to changes in polycyclic aromatic hydrocarbon concentrations.  相似文献   

6.
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.  相似文献   

7.
The steady-state effect of 2,5,2′,5′-tetrachlorobiphenyl (TCBP) on the green alga Selenastrum capricornutum was investigated in a P-limited two-stage chemostat system. The partition coefficient of this polychlorinated biphenyl congener was 5.9 × 104 in steady-state cultures. At a cellular TCBP concentration of 12.2 × 10−8 ng · cell−1, growth rate was not affected. However, photosynthetic capacity (Pmax) was significantly enhanced by TCBP (56 × 10−9 μmol of C · cell−1 · h−1 versus 34 × 10−9 μmol of C · cell−1 · h−1 in the control). Photosynthetic efficiency, or the slope of the photosynthesis-irradiance curve, was also significantly higher. There was little difference in the cell chlorophyll a content, and therefore the difference in these photosynthetic characteristics was the same even when they were expressed on a per-chlorophyll a basis. Cell C content was higher in TCBP-containing cells than in TCBP-free cells, but approximately 36% of the C fixed by cells with TCBP was not incorporated as cell C. The maximum P uptake rate was also enhanced by TCBP, but the half-saturation concentration appeared to be unaffected.  相似文献   

8.
There are only a few examples of microbial conversion of picric acid (2,4,6-trinitrophenol). None of the organisms that have been described previously is able to use this compound as a sole source of carbon, nitrogen, and energy at high rates. In this study we isolated and characterized a strain, strain CB 22-2, that was able to use picric acid as a sole source of carbon and energy at concentrations up to 40 mM and at rates of 1.6 mmol · h−1 · g (dry weight) of cells−1 in continuous cultures and 920 μmol · h−1 · g (dry weight) of cells−1 in flasks. In addition, this strain was able to use picric acid as a sole source of nitrogen at comparable rates in a nitrogen-free medium. Biochemical characterization and 16S ribosomal DNA analysis revealed that strain CB 22-2 is a Nocardioides sp. strain. High-pressure liquid chromatography and UV-visible light data, the low residual chemical oxygen demand, and the stoichiometric release of 2.9 ± 0.1 mol of nitrite per mol of picric acid provided strong evidence that complete mineralization of picric acid occurred. During transformation, the metabolites detected in the culture supernatant were the [H]-Meisenheimer complexes of picric acid and 2,4-dinitrophenol (H-DNP), as well as 2,4-dinitrophenol. Experiments performed with crude extracts revealed that H-DNP formation indeed is a physiologically relevant step in picric acid metabolism.  相似文献   

9.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

10.
Vibrio gazogenes ATCC 29988 growth and prodigiosin synthesis were studied in batch culture on complex and defined media and in chemostat cultures on defined medium. In batch culture on complex medium, a maximum growth rate of 0.75 h−1 and a maximum prodigiosin concentration of 80 ng of prodigiosin · mg of cell protein−1 were observed. In batch culture on defined medium, maximum growth rates were lower (maximum growth rate, 0.40 h−1), and maximum prodigiosin concentrations were higher (1,500 ng · mg of protein−1). In batch culture on either complex or defined medium, growth was characterized by a period of logarithmic growth followed by a period of linear growth; on either medium, prodigiosin biosynthesis was maximum during linear growth. In batch culture on defined medium, the initial concentration of glucose optimal for growth and pigment production was 3.0%; higher levels of glucose suppressed synthesis of the pigment. V. gazogenes had an absolute requirement for Na+; optimal growth occurred in the presence of 100 mM NaCl. Increases in the concentration of Na+ up to 600 mM resulted in further increases in the concentration of pigment in the broth. Prodigiosin was synthesized at a maximum level in the presence of inorganic phosphate concentrations suboptimal for growth. Concentrations of KH2PO4 above 0.4 mM caused decreased pigment synthesis, whereas maximum cell growth occurred at 1.0 mM. Optimal growth and pigment production occurred in the presence of 8 to 16 mg of ferric ion · liter−1, with higher concentrations proving inhibitory to both growth and pigment production. Both growth and pigment production were found to decrease with increased concentrations of p-aminobenzoic acid. The highest specific concentration of prodigiosin (3,480 ng · mg protein−1) was observed in chemostat cultures at a dilution rate of 0.057 h−1. The specific rate of prodigiosin production at this dilution rate was approximately 80% greater than that observed in batch culture on defined medium. At dilution rates greater than 0.057 h−1, the concentration of cells decreased with increasing dilution rate, resulting in a profile comparable to that expected for linear growth kinetics. No explanation could be found for the linear growth profiles obtained for both batch and chemostat cultures.  相似文献   

11.
Bacterioplankton productivity in Antarctic waters of the eastern South Pacific Ocean and Drake Passage was estimated by direct counts and frequency of dividing cells (FDC). Total bacterioplankton assemblages were enumerated by epifluorescent microscopy. The experimentally determined relationship between in situ FDC and the potential instantaneous growth rate constant (μ) is best described by the regression equation ln μ = 0.081 FDC − 3.73. In the eastern South Pacific Ocean, bacterioplankton abundance (2 × 105 to 3.5 × 105 cells per ml) and FDC (11%) were highest at the Polar Front (Antarctic Convergence). North of the Subantarctic Front, abundance and FDC were between 1 × 105 to 2 × 105 cells per ml and 3 to 5%, respectively, and were vertically homogeneous to a depth of 600 m. In Drake Passage, abundance (10 × 105 cells per ml) and FDC (16%) were highest in waters south of the Polar Front and near the sea ice. Subantarctic waters in Drake Passage contained 4 × 105 cells per ml with 4 to 5% FDC. Instantaneous growth rate constants ranged between 0.029 and 0.088 h−1. Using estimates of potential μ and measured standing stocks, we estimated productivity to range from 0.62 μg of C per liter · day in the eastern South Pacific Ocean to 17.1 μg of C per liter · day in the Drake Passage near the sea ice.  相似文献   

12.
3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L−1 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q max, K s and K i of 0.8615 h−1, 626.7842 mg·L−1 and 6.7586 mg·L−1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t 1/2) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.  相似文献   

13.
The purpose of this study was to investigate the relationship between biomechanical variables and running economy in North African and European runners. Eight North African and 13 European male runners of the same athletic level ran 4-minute stages on a treadmill at varying set velocities. During the test, biomechanical variables such as ground contact time, swing time, stride length, stride frequency, stride angle and the different sub-phases of ground contact were recorded using an optical measurement system. Additionally, oxygen uptake was measured to calculate running economy. The European runners were more economical than the North African runners at 19.5 km · h−1, presented lower ground contact time at 18 km · h−1 and 19.5 km · h−1 and experienced later propulsion sub-phase at 10.5 km · h−1,12 km · h−1, 15 km · h−1, 16.5 km · h−1 and 19.5 km · h−1 than the European runners (P < 0.05). Running economy at 19.5 km · h−1 was negatively correlated with swing time (r = -0.53) and stride angle (r = -0.52), whereas it was positively correlated with ground contact time (r = 0.53). Within the constraints of extrapolating these findings, the less efficient running economy in North African runners may imply that their outstanding performance at international athletic events appears not to be linked to running efficiency. Further, the differences in metabolic demand seem to be associated with differing biomechanical characteristics during ground contact, including longer contact times.  相似文献   

14.
The gene cassette (camA+ camB+ camC) encoding a cytochrome P-450cam variant was integrated into the nonessential gene pcpM of the pentachlorophenol degrader Sphingobium chlorophenolicum ATCC 39723 by homologous recombination. The recombinant strain could degrade hexachlorobenzene at a rate of 0.67 nmol · mg (dry weight)−1 · h−1, and intermediate pentachlorophenol was also identified.  相似文献   

15.
Thermothrix thiopara did not appear to be stressed at high temperature (72°C). Both the actual and theoretical yields were higher than those of analogous mesophilic sulfur bacteria, and the specific growth rate (μmax) was more rapid than that of most autotrophs. The specific growth rate (0.58 h−1), specific maintenance rate (0.11 h−1), actual molar growth yield at μmax (Ymax = 16 g mol−1), and theoretical molar growth yield (YG = 24 g mol−1) were all higher for T. thiopara (72°C) than for mesophilic (25 to 30°C) Thiobacillus spp. The growth efficiencies for T. thiopara at 70 and 75°C (0.84 and 0.78) were significantly higher than at 65°C (0.47). Corresponding specific maintenance rates were highest at 65°C (0.41 h−1) and lowest at 70 and 75°C (0.11 and 0.15 h−1, respectively). Growth efficiencies of metabolically similar mesophiles were generally higher than for T. thiopara. However, the actual yields at μmax were higher for T. thiopara because its theoretical yield was higher. Thus, at 70°C, T. thiopara was capable of deriving more metabolically useful energy from thiosulfate than were mesophilic sulfur bacteria at 25 and 30°C. The low growth efficiency of T. thiopara reflected higher maintenance expenditures. T. thiopara had higher maintenance rates than Thiobacillus ferroxidans or Thiobacillus denitrificans, but also attained higher molar growth yields. It is concluded that sulfur metabolism may be more efficient overall at extremely high temperatures due to increased theoretical yields despite increased maintenance requirements.  相似文献   

16.
Bacterial biomass, metabolic condition, and activity were measured over a 16-month period in the surface sediments of the following four field sites with differing dissolved organic matter regimes: a woodlot spring seep, a meadow spring seep, a second-order stream, and a third-order stream. Total bacterial biomass was measured by lipid phosphate and epifluorescence microscopic counts (EMC), and viable biomass was measured by 14C most probable number, EMC with 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride reduction, and ATP. Bacterial metabolic condition was determined from the percentage of respiring cells, poly-β-hydroxybutyrate concentrations, and adenylate energy charge. Activity measures included 14C-lipid synthesis, 32P-phospholipid synthesis, the rate of uptake of algal lysate dissolved organic carbon, and respiration, from which biosynthesis was calculated (dissolved organic carbon uptake corrected for respiration). Total bacterial biomass (from EMC) ranged from 0.012 to 0.354 μg of C/mg of dry sediment and was usually lowest in the third-order stream. The percentage of cells respiring was less than 25% at all sites, indicating that most bacteria were dormant or dead. Adenylate energy charge was measured only in the third-order stream and was uniformly low. Poly-β-hydroxybutyrate concentrations were greater in the woodlot spring seep than in the second- and third-order streams. Uptake of algal lysate dissolved organic carbon ranged from undetectable levels to 166 mg of C · m−2 · h−1. Little community respiration could be attributed to algal lysate metabolism. Phospholipid synthesis ranged from 0.006 to 0.354 pmol · mg of dry sediment−1 · h−1. Phospholipid synthesis rates were used to estimate bacterial turnover at the study sites. An estimated 375 bacterial generations per year were produced in the woodlot spring seep, and 67 per year were produced in the third-order stream.  相似文献   

17.
Acetate dominated the extracellular pool of volatile fatty acids (VFAs) in the hindgut fluid of Reticulitermes flavipes, Zootermopsis angusticollis, and Incisitermes schwarzi, where it occurred at concentrations of 57.9 to 80.6 mM and accounted for 94 to 98 mol% of all VFAs. Small amounts of C3 to C5 VFAs were also observed. Acetate was also the major VFA in hindgut homogenates of Schedorhinotermes lamanianus, Prorhinotermes simplex, Coptotermes formosanus, and Nasutitermes corniger. Estimates of in situ acetogenesis by the hindgut microbiota of R. flavipes (20.2 to 43.3 nmol · termite−1 · h−1) revealed that this activity could support 77 to 100% of the respiratory requirements of the termite (51.6 to 63.6 nmol of O2 · termite−1 · h−1). This conclusion was buttressed by the demonstration of acetate in R. flavipes hemolymph (at 9.0 to 11.6 mM), but not in feces, and by the ability of termite tissues to readily oxidize acetate to CO2. About 85% of the acetate produced by the hindgut microbiota was derived from cellulose C; the remainder was derived from hemicellulose C. Selective removal of major groups of microbes from the hindgut of R. flavipes indicated that protozoa were primarily responsible for acetogenesis but that bacteria also functioned in this capacity. H2 and CH4 were evolved by R. flavipes (usually about 0.4 nmol · termite−1 · h−1), but these compounds represented a minor fate of electrons derived from wood dissimilation within R. flavipes. A working model is proposed for symbiotic wood polysaccharide degradation in R. flavipes, and the possible roles of individual gut microbes, including CO2-reducing acetogenic bacteria, are discussed.  相似文献   

18.
N2 fixation by bacteria in associative symbiosis with washed roots of 13 Poaceae and 8 other noncultivated plant species in Finland was demonstrated by the acetylene reduction method. The roots most active in C2H2 reduction were those of Agrostis stolonifera, Calamagrostis lanceolata, Elytrigia repens, and Phalaris arundinacea, which produced 538 to 1,510 nmol of C2H4·g−1 (dry weight)· h−1 when incubated at pO2 0.04 with sucrose (pH 6.5), and 70 to 269 nmol of C2H4· g−1 (dry weight)·h−1 without an added energy source and unbuffered. Azospirillum lipferum, Enterobacter agglomerans, Klebsiella pneumoniae, and a Pseudomonas sp. were the acetylene-reducing organisms isolated. The results demonstrate the presence of N2-fixing organisms in associative symbiosis with plant roots found in a northern climatic region in acidic soils ranging down to pH 4.0.  相似文献   

19.
Batch and continuous production of the extracellular heme glycoprotein chloroperoxidase (CPO) was studied with an airlift fermentor. We induced Caldariomyces fumago CMI 89362 to form pellets by transferring a small inoculum volume in preculture prior to growth in a 1-liter fermentor. Continuous replacement of the fructose-salts medium (dilution rate, 0.008 h−1) supported continuous CPO formation at an average concentration of 128 ± 10 mg of CPO liter−1 for 8 days. Optimum CPO production rates averaged 1.2 ± 0.1 mg of CPO h−1 at dilution rates below 0.033 h−1. Varying the carbohydrate content of the feed solution or the time of starting the feed did not significantly alter the amount of CPO produced. Batch fermentation in the airlift fermentor resulted in maximum CPO concentrations of 280 ± 80 mg of CPO liter−1, although on two separate occasions CPO concentrations reached 400 to 450 mg liter−1, which was double the amount obtained by free hyphae in shake flask culture.  相似文献   

20.
Wide ranges of growth yields on sulfur (from 2.4 × 1010 to 8.1 × 1011 cells g−1) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter−1 h−1) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号