首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas MS can grow on methylamine and a number of other compounds containing C1 units as a sole source of carbon and energy. Assimilation of carbon into cell material occurs via the "serine pathway" since enzymes of this pathway are induced after growth on methylamine, but not malate or acetate. A mutant has been isolated which is unable to grow on methylamine or any other related substrate providing C1 units. This mutant is also unable to grow on acetate. Measurment of enzyme activities in cell-free extracts of wild-type cells showed that growth on methylamine caused induction of isocitrate lyase, a key enzyme in the glyoxylate cycle. The mutant organism lacks malate lyase, a key enzyme of the serine pathway, and isocitrate lyase as well. These results suggest that utilization of C1 units by Pseudomonas MS results in the net accumulation of acetate which is then assimilated into cell material via the glyoxylate cycle.  相似文献   

2.
3.
When Rhodopseudomonas gelatinosa was grown on acetate aerobically in the dark both enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, could be detected. However, under anaerobic conditions in the light only isocitrate lyase, but not malate synthase, could be found.The reactions, which bypass the malate synthase reaction are those catalyzed by alanine glyoxylate aminotransferase and the enzymes of the serine pathway.Other Rhodospirillaceae were tested for isocitrate lyase and malate synthase activity after growth with acetate; they could be divided into three groups: I. organisms possessing both enzymes; 2. organisms containing malate synthase only; 3. R. gelatinosa containing only isocitrate lyase when grown anaerobically in the light.  相似文献   

4.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

5.
Both key enzymes for the glyoxylate cycle, isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2), were purified and characterized from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Whereas the former enzyme was copurified with the aconitase, the latter enzyme could be enriched to apparent homogeneity. Amino acid sequencing of three internal peptides of the isocitrate lyase revealed the presence of highly conserved residues. With respect to cofactor requirement and quarternary structure the crenarchaeal malate synthase might represent a novel type of this enzyme family. High activities of both glyoxylate cycle enzymes could already be detected in extracts of glucose grown cells and both increased about two-fold in extracts of acetate grown cells.  相似文献   

6.
The presence of isocitrate lyase and malate synthase was detected in cell-free extracts ofAcetobacter aceti, grown in a mineral medium with acetate as sole carbon source. The presence of these enzymes explains the ability of this strain to grow with ethanol or acetate as sole carbon source, which is an important characteristic in Frateur's classification system forAcetobacter. In addition to isocitrate lyase and malate synthase, these cell-free extracts were found to contain glyoxylate carboligase, tartronicsemialdehyde reductase and glycerate kinase. The induction of these enzymes during growth on acetate is thought to be caused by the very high activity of isocitrate lyase, which may lead to an accumulation of glyoxylate. The importance of this pathway in cells growing with acetate as sole carbon source for the synthesis of their carbohydrate components is discussed. The presence of the enzymes from the pathway from glyoxylate to 3-phosphoglycerate explains the ability of this strain to grow with ethyleneglycol and glycollate as sole carbon source.  相似文献   

7.
The glyoxylate shunt enzymes, isocitrate lyase and malate synthase, were present at high levels in mycelium grown on acetate as sole source of carbon, compared with mycelium grown on sucrose medium. The glyoxylate shunt activities were also elevated in mycelium grown on glutamate or Casamino Acids as sole source of carbon, and in amino acid-requiring auxotrophic mutants grown in sucrose medium containing limiting amounts of their required amino acid. Under conditions of enhanced catabolite repression in mutants grown in sucrose medium but starved of Krebs cycle intermediates, isocitrate lyase and malate synthase levels were derepressed compared with the levels in wild type grown on sucrose medium. This derepression did not occur in related mutants in which Krebs cycle intermediates were limiting growth but catabolite repression was not enhanced. No Krebs cycle intermediate tested produced an efficient repression of isocitrate lyase activity in acetate medium. Of the two forms of isocitrate lyase in Neurospora, isocitrate lyase-1 constituted over 80% of the isocitrate lyase activity in acetate-grown wild type and also in each of the cases already outlined in which the glyoxylate shunt activities were elevated on sucrose medium. On the basis of these results, it is concluded that the synthesis of isocitrate lyase-1 and malate synthase in Neurospora is regulated by a glycolytic intermediate or derivative. Our data suggest that isocitrate lyase-1 and isocitrate lyase-2 are the products of different structural genes. The metabolic roles of the two forms of isocitrate lyase and of the glyoxylate cycle are discussed on the basis of their metabolic control and intracellular localization.  相似文献   

8.
9.
The metabolic fate of acetate, produced during taurine catabolism in Pseudomonas aeruginosa TAU-5, appear to involve the glyoxylate cycle. Organisms grown on taurine have significantly higher levels of malate synthetase and isocitrate lyase than cells grown on nutrient broth, but were comparable to the levels found in acetate-grown organisms. Itaconate, an isocitrate lyase inhibitor, produced a prolonged lag phase and reduced the growth rate of organisms when it was present in the taurine or acetate growth medium. Ethylmethanesulfonate treatment of TAU-5 yielded mutant strains unable to grow on taurine or acetate as sole carbon sources, due to a lack of either malate synthetase or isocitrate lyase. Spontaneous revertants derived from these mutant strains regained the missing enzyme activity and the ability to grow on taurine or acetate.  相似文献   

10.
11.
The activities of isocitrate lyase and malate synthase—the key enzymes in the glyoxylate cycle—were found to be fairly high in n-alkane-, acetate-, and propionate-grown cells of Candida tropicalis compared with those in glucose-grown cells. In fact, the results of immunochemical studies showed that the increases in the enzyme levels resulted from increases in the amounts of the enzyme proteins. But the increases in these enzyme activities were not always coincident with the appearance of peroxisomes. Isocitrate lyase and malate synthase were purified from a peroxisome-containing particulate fraction of alkane-grown cells and from whole cells grown on glucose, acetate and propionate. The respective enzymes showed no significant differences in immunochemical properties, specific activities, molecular masses of active forms and subunits, on patterns of limited proteolysis with proteases, but the malate synthases of alkane- and propionate- grown cells showed higher Km values for acetyl-CoA than the enzymes of glucose- and acetate- grown cells. The results indicated that the synthesis of the key enzymes in the glyoxylate cycle did not necessarily have to be coincident with the development of peroxisomes in this yeast.  相似文献   

12.
The metabolic fate of acetate, produced during taurine catabolism in Pseudomonas aeruginosa TAU-5, appears to involve the glyoxylate cycle. Organisms grown on taurine have significantly higher levels of malate synthetase and isocritrate lyase than cells grown on nutrient broth, but were comparable to the levels found in acetate-grown organisms. Itaconate, an isocitrate lyase inhibitor, produced a prolonged lag phase and reduced the growth rate of organisms when it was present in the taurine or acetate growth medium. Ethylmethanesulfonate treatment of TAU-5 yielded mutant strains unable to grow on taurine or acetate as sole carbon sources, due to a lack of either malate synthetase or isocitrate lyase. Spontaneous revertants derived from these mutant strains regained the missing enzyme activity and the ability to grow on taurine or acetate.  相似文献   

13.
Studies on acetate utilization by Rhodopseudomonas capsulata strain St. Louis indicated that the wild type grew poorly on acetate and made little if any of the glyoxylate cycle enzyme isocitrate lyase. A spontaneous mutant, Ac-l, capable of vigorous and immediate growth on acetate and exhibiting high levels of isocitrate lyase activity, was isolated in the course of those studies.Isocitrate lyase was not formed when the mutant was grown on malate. Addition of malate to cultures of Ac-l growing on acetate resulted in loss of the enzyme by dilution through growth.Starvation of acetate-grown Ac-l for acetate resulted in a rapid and complete loss of isocitrate lyase activity which was shown to be energy dependent. Readdition of acetate to a starved culture previously grown on acetate resulted in a rapid recovery of enzyme activity. The recovery required energy and was sensitive to chloramphenicol inhibition at any time during the recovery phase.  相似文献   

14.
Cell extracts of Rhodobacter capsulatus grown on acetate contained an apparent malate synthase activity but lacked isocitrate lyase activity. Therefore, R. capsulatus cannot use the glyoxylate cycle for acetate assimilation, and a different pathway must exist. It is shown that the apparent malate synthase activity is due to the combination of a malyl-coenzyme A (CoA) lyase and a malyl-CoA-hydrolyzing enzyme. Malyl-CoA lyase activity was 20-fold up-regulated in acetate-grown cells versus glucose-grown cells. Malyl-CoA lyase was purified 250-fold with a recovery of 6%. The enzyme catalyzed not only the reversible condensation of glyoxylate and acetyl-CoA to L-malyl-CoA but also the reversible condensation of glyoxylate and propionyl-CoA to beta-methylmalyl-CoA. Enzyme activity was stimulated by divalent ions with preference for Mn(2+) and was inhibited by EDTA. The N-terminal amino acid sequence was determined, and a corresponding gene coding for a 34.2-kDa protein was identified and designated mcl1. The native molecular mass of the purified protein was 195 +/- 20 kDa, indicating a homohexameric composition. A homologous mcl1 gene was found in the genomes of the isocitrate lyase-negative bacteria Rhodobacter sphaeroides and Rhodospirillum rubrum in similar genomic environments. For Streptomyces coelicolor and Methylobacterium extorquens, mcl1 homologs are located within gene clusters implicated in acetate metabolism. We therefore propose that L-malyl-CoA/beta-methylmalyl-CoA lyase encoded by mcl1 is involved in acetate assimilation by R. capsulatus and possibly other glyoxylate cycle-negative bacteria.  相似文献   

15.
Syntheses of the key enzymes of the glyoxylate cycle, in Candida lipolytica, were highly repressed by glucose. Syntheses of the key enzymes of the methylcitric acid cycle were also slightly repressed by glucose but the degrees of repression in the syntheses of these enzymes were nearly equal to those of repression in the syntheses of several enzymes of the citric acid cycle. All enzyme syntheses repressed by glucose were derepressed during incubation with succinate as well as with n-alkanes: enzyme syntheses of the methylcitric acid cycle did not necessitate the addition of propionate or odd-carbon n-alkanes. The enzymes of the methylcitric acid cycle seem to be constitutive, similarly as those of the citric acid cycle.

In the parent strain, the respective enzyme levels of the cells grown on an odd-numbered n-alkane were similar to those of the cells grown on an even-numbered n-alkane. But in the mutant strain lacking 2-methylisocitrate lyase, the cells grown on the odd-numbered alkane contained aconitate hydratase, NADP-Iinked isocitrate dehydrogenase, isocitrate lyase, 2- methylcitrate synthase and 2-methylaconitate hydratase all at higher levels than the cells grown on the even-numbered alkane. Both the parent cells and the mutant cells grown on the same carbon source contained at individually similar levels of the following six enzymes; citrate synthase, NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase, and malate synthase. The pleiotropic changes of enzyme activities in the mutant cells grown on the odd-numbered alkane seem to be ascribable to direct or indirect stimulation caused by threo-ds-2-methylisocitric acid accumulation.  相似文献   

16.
During growth on succinate, Acinetobacter calcoaceticus contains two forms of the enzyme isocitrate dehydrogenase. Addition of acetate to a lag-phase culture grown on succinate causes a dramatic increase in activity of form II of isocitrate dehydrogenase and in isocitrate lyase. Form II of isocitrate dehydrogenase may be responsible for the partition of isocitrate between the TCA cycle and the glyoxylate by-pass. This report describes the phosphorylation of the enzyme isocitrate lyase from A. calcoaceticus. This phosphorylation may be a regulatory mechanism for the glyoxylate by-pass.  相似文献   

17.
McFadden, Bruce A. (Washington State University, Pullman, Wash.) and William V. Howes. Oxidative metabolism and the glyoxylate cycle in Pseudomonas indigofera. J. Bacteriol. 84:72-76. 1962.-Oxidative patterns of Pseudomonas indigofera have been investigated. Intact cells oxidize acetate, ethanol, fumarate, glyoxylate, alpha-ketoglutarate, malate, oxaloacetate, pyruvate, and succinate to greater than 35% of completion. Isocitrate is oxidized to 21% of completion. Citrate is not oxidized by whole cells but is oxidized by cell-free preparations, as are fumarate, isocitrate, malate, and succinate. These patterns are suggestive of the operation of the tricarboxylic acid cycle. Investigations of levels of isocitrate lyase and malate synthase as functions of growth substrate have been conducted. Assays for these enzymes in "soluble" preparations were performed under ostensibly optimal conditions for catalysis. Growth substrates used at 0.3% were: (i) ethanol, (ii) glucose, (iii) succinic acid, and (iv) yeast extract. Specific activities of isocitrate lyase were: for (i) 3.80, (ii) 0.61, (iii) 1.47, and (iv) 1.33; activities of malate synthase were: for (i) 0.18, (ii) 0.032, (iii) 0.021, and (iv) 0.029. Additionally, the isocitrate lyase level from butyrate-grown cells was similar to that for ethanol-grown cells; the specific activity of malate synthase was about 60% as high. Specific activities of these enzymes were reproducible when conditions of sonic disruption were standardized. Longer durations of disruption decreased both activities.  相似文献   

18.
Abstract The photosynthetic non-sulfur purple bacterium Rhodobacter capsulatus E1F1 can grow on acetate or dl -malate photoheterotrophically under anerobic conditions or chemoheterotrophically in the dark in the presence of dioxygen. Bacterial cells grown under both anaerobic and aerobic conditions exhibited high amounts of the tricarboxylic acid cycle enzymes especially in dark-aerobic cultures. A high activity of isocitrate lyase was found in cells of R. capsulatus E1F1 and, to a lesser extent, in those of R. capsulatus IP2, Rhodobacter sphaeroides and Rhodospirillum rubrum grown photoheterotrophically on acetate under anaerobic conditions. The second enzyme of the glyoxylate shunt, malate synthase, appears to be constitutive. Itaconate, a powerful inhibitor of isocitrate lyase, severely inhibited growth of R. capsulatus, R. rubrum and R. sphaeroides on acetate, thus corroborating a physiological role of the enzyme in acetate metabolism by Rhodospirillaceae.  相似文献   

19.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

20.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were present in cell-free extracts of the phototrophic, green, thermophilic bacterium Chloroflexus aurantiacus grown with acetate as the sole organic carbon source.The optimum temperature of these enzymes was 40° C, and their specific activities were high enough to account for the observed growth rate. Lower levels of the enzymes were found in extracts from cells grown on a complete medium.Itaconate was shown to inhibit isocitrate lyase from C. aurantiacus 96% at a concentration of 0.25 mM and also had a profound effect on the growth of the organism on acetate, 0.25 mM inhibiting completely. Itaconate also inhibited the growth when added to the complex medium, but in this case much higher concentrations were required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号