首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ewes were actively immunized against oestrone-6-(O-carboxymethyl)-oxime-bovine serum albumin, 17 beta-oestradiol-6-(O-carboxymethyl)oxime-bovine serum albumin or bovine serum albumin (controls). All 4 control ewes, 1 of 5 oestradiol-immunized ewes and 1 of 5 oestrone-immunized ewes had regular oestrous cycles. The other animals displayed oestrus irregularly or remained anoestrous. The plasma concentrations of LH and, to a lesser degree, FSH were increased relative to those in control ewes on Days 11-12 after oestrus or a similar total period after progestagen treatment in ewes not showing oestrus. The ovaries were examined and jugular venous blood, ovarian venous blood and follicular fluid were collected at laparotomy on Days 9-10 of the oestrous cycle. The ovaries of immunized ewes were heavier than those of control ewes. There were no CL in 5 of the immunized ewes but in the other 5 there were more CL than in the control ewes. Ovaries from 4 of 5 oestrone-immunized ewes contained luteinized follicles, while ovaries from 4 of 5 oestradiol-immunized ewes contained very large follicles with a degenerated granulosa and a hyperplastic theca interna. Both types of follicles produced progesterone, detectable in ovarian venous plasma and production of other steroids, particularly androstenedione, was also increased. The steroid-binding capacity of plasma was increased in the immunized ewes. The binding capacity of follicular fluid for oestradiol-17 beta and oestrone was similar to that of jugular venous plasma from the same ewes. These results suggest that immunization against oestrogens disrupts reproductive function by interfering with the feedback mechanisms controlling gonadotrophin secretion.  相似文献   

2.
An in-vitro bioassay for inhibin based on FSH content or release by rat pituitary cells was validated for measuring inhibin activity in ovine plasma and lymph. Dose-dependent increases in inhibin activity were detected in peripheral plasma of 4 ovariectomized ewes 1 min after i.v. injections of ovine follicular fluid, and the half-life of inhibin in plasma for 2 ewes was 45 and 50 min, respectively. Inhibin was detected in ovarian lymph but not in ovarian or jugular venous plasma, even after treatment of ewes with PMSG to induce folliculogenesis. Destruction of visible follicles (greater than 0.5 mm diameter) on the ovaries of 4 PMSG-treated ewes by electrocautery was followed by a rapid and sustained decline in secretion of inhibin in ovarian lymph for up to 4 h. Ovarian lymph flow rates were either unchanged or slightly increased after cautery. Oestrogen concentrations in peripheral venous plasma declined within 15-30 min of cautery, but concentrations remained well above baseline. There was a significant decrease in peripheral progesterone concentrations in these same samples, but not until 2-3 h after cautery. FSH in peripheral plasma was depressed or non-detectable in PMSG-treated ewes and neither FSH nor LH concentrations in peripheral plasma were significantly altered up to 4 h after cautery of ovarian follicles. It is concluded that (a) antral follicles (greater than 0.5 mm) are the source of inhibin present in ovarian lymph, and (b) the ovarian lymphatic system is a route by which inhibin could reach the peripheral circulation, particularly in the luteal phase when ovarian lymph flow rates are high.  相似文献   

3.
Eighteen sows (6 primiparous and 12 multiparous) were allotted randomly within parity to two lactational treatments: litter separation (LS; 6 h/day) plus boar exposure (BE; 1 h/day; N = 14) beginning 8 days before weaning (4 weeks) and no LS + no BE (controls; N = 4). Blood was collected from all sows via indwelling venous catheters at 20-min intervals for 5 h on Days -1, 0, 1, 2 and 3 from start of treatment. Control sows and those exposed to LS + BE not exhibiting oestrus during lactation were resampled on Days -1, 0, 1 and 2 from weaning. All 10 multiparous sows receiving LS + BE exhibited oestrus during lactation, whereas none of the 4 primiparous sows exposed to LS + BE or the 2 control multiparous and 2 control primiparous sows exhibited lactational oestrus. Overall concentrations of LH in serum were higher (P less than 0.05) in sows receiving LS + BE than in control sows during lactation, whereas overall FSH was higher (P less than 0.05) in primiparous than multiparous sows. Number and amplitude of pulses of LH were greater (P less than 0.05) for treated primiparous than multiparous sows during lactation. Oestradiol-17 beta increased (P less than 0.05) in sows during LS + BE and was higher (P less than 0.01) in multiparous sows of this group than control multiparous or treated primiparous sows. Preweaning concentrations of cortisol and progesterone in serum were higher (P less than 0.05) in treated than control sows for multiparous and primiparous animals. In sows resampled at weaning, the number of pulses of LH was greater (P less than 0.05) in treated primiparous than in control sows. Postweaning concentrations of FSH in serum were unaffected by preweaning treatments. It was concluded that (1) litter separation and boar exposure increased basal and pulsatile secretion of LH in multiparous and primiparous sows; (2) lack of ovarian follicular development and oestradiol secretion may preclude expression of oestrus in primiparous sows during lactation, despite elevated concentrations of FSH and LH in serum; and (3) if elevated concentrations of cortisol and progesterone inhibit the onset of oestrous cycles, in response to litter separation and boar exposure during lactation, the effect is limited to primiparous sows.  相似文献   

4.
No gene-specific differences were found during either the luteal or follicular phases of the oestrous cycle in the venous secretion rates of ovaries or in concentrations of immunoreactive inhibin in peripheral plasma between Booroola ewes that were homozygous carriers (BB) or non-carriers (++) of the FecB gene. In three experiments in which concentrations of plasma inhibin and follicle-stimulating hormone (FSH) were compared, gene-specific differences were noted for FSH (P less than 0.05), but no significant correlations were noted between FSH and inhibin for either genotype. Granulosa cells and follicular fluid, but not theca interna, stroma or corpora lutea, were the major intra-ovarian sites of inhibin; no gene-specific differences were noted for inhibin concentrations in follicular fluid or in any of the intra-ovarian tissues. The mean concentrations of inhibin in follicular fluid remained constant irrespective of follicular diameter whereas the mean total contents of inhibin increased significantly with increasing diameter (P less than 0.05). Inhibin secretion rates were four times higher in ovaries with oestrogen-enriched follicles (i.e. greater than or equal to 50 ng oestradiol ml-1) than in ovaries with no such follicles (P less than 0.01). Moreover, inhibin concentrations were higher in follicular fluid of oestrogen-enriched follicles than in those with low oestrogen (i.e. less than 50 ng ml-1; P less than 0.05). Ovariectomy resulted in a significant reduction in concentrations of immunoreactive inhibin from plasma (P less than 0.01). The residual plasma inhibin in some Booroola ewes was not associated with genotype. It is concluded that, although antral follicles are a major source of inhibin in Booroola ewes, immunoreactive inhibin is not associated with the FecB gene and is not responsible for the gene-specific differences in concentrations of FSH in plasma.  相似文献   

5.
Follicular fluid was aspirated from all visible surface follicles of rats at selected times of the oestrous cycle. Fluids from a pair of rat ovaries were pooled and assayed for inhibin activity by the rat anterior pituitary cell culture assay. Serum LH, FSH and progesterone as well as follicular fluid progesterone, total oestrogens and androstenedione were also measured. Follicular fluid inhibin activity was relatively constant throughout the oestrous cycle (30.7 +/- 3.4% inhibition of FSH per 0.1 microliter follicular fluid) except for a well defined surge at pro-oestrus (09:00-16:00 h, peak at 14:00 h = 84.0 +/- 7.2% inhibition of FSH per 0.1 microliter follicular fluid). The follicular fluid was not treated with charcoal before assay because a pilot experiment showed that such treatment did not alter the inhibin activity of follicular fluid. Steroids in follicular fluid were generally lowest on the afternoon of oestrus and the morning of dioestrus I and generally elevated during pro-oestrus.  相似文献   

6.
The ovarian follicular system was studied in 4 lactating sows (6 or 8 weeks lactation period), 4 post weaning sows (2 or 4 days after weaning) and 5 post weaning anoestrous sows (22 days after weaning) by macroscopical and microscopical examinations. Blood sampling was performed daily in the post weaning anoestrous sows. The results showed that none of the sows had ovulated during lactation and after weaning. Only small and medium sized follicles were present in the ovaries of the sows. The blood levels of oestradiol-17β and progesterone were low throughout the post weaning period in the anoestrous sows. Microscopical examination showed that all sows had more normal than atretic follicles. In the lactating sows all follicles were below 5 mm in size, the majority being small (1.00–2.99 mm in diameter). The post weaning sows had follicles up to 5.00–5.99 mm and 23–24% of the follicles were medium sized (3.00–5.99 mm in diameter). The post weaning anoestrous sows had no follicles above 5 mm in diameter but many normal medium sized follicles.  相似文献   

7.
The object of this investigation was to study the clinical and endocrine responses to transportation and relocation in 8 post-weaning anoestrous sows. They had been anoestrous for at least 24 days after weaning before transportation/relocation was performed. Laparoscopy, performed at the beginning of the experiment, revealed that the ovaries contained many follicles (≤ 6 mm in diameter), but no corpora lutea. Blood samples, taken before and after transportation/relocation, showed that LH activity was low at the beginning of the experiment and increased after transportation/relocation in the majority of the sows. Peripheral plasma concentrations of oestradiol-17β increased 1–4 days after transportation/relocation in 6 out of 8 sows which was followed by oestrus and ovulation. Progesterone concentrations were also below the practical detection limit until the end of oestrus. This study has demonstrated that a change in environment by transportation and relocation can induce oestrus by increasing the LH activity in post-weaning anoestrous sows.  相似文献   

8.
Folliculogenesis was studied by assessing development of the largest 10 follicles obtained from 10 sows 48 h after weaning and by analyzing changes in plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) for 24 h before weaning until 48 h after weaning. Follicular diameter, follicular fluid volume, and concentrations of estradiol and testosterone and granulosa cell numbers were determined in all follicles, and 125I-hCG binding to theca and granulosa and maximal aromatase activity in vitro was determined in five follicles/sow. Overall, a significant rise in LH, but not in FSH, occurred at weaning, although in individual sows an increase in LH was not necessarily related to subsequent estrogenic activity of follicles. In 9/10 sows, PRL fell precipitously after weaning. In lactation, LH was negatively, and after weaning, positively, correlated with FSH and PRL. Marked variability in follicular development existed within and between sows. Overall, most follicular characteristics were positively correlated to follicular diameter; however, in larger follicles the number of granulosa cells was variable and unrelated to estrogenic activity, which--together with theca and granulosa binding of hCG--increased abruptly at particular stages of follicular development. Differences in maturation of similarly sized follicles from different sows were related to estrogenic activity of the dominant follicles but not to consistent differences in LH, FSH or PRL secretion. Both the dynamics and the control of folliculogenesis in the sow, therefore, appear to be complex.  相似文献   

9.
Blood samples were collected from primiparous sows via indwelling jugular cannulae at 15-min intervals for 12 h before and for 24 h (2 sows) or 48 h (10 sows) after weaning and then every 4 h until behavioural oestrus. Weaning to oestrus intervals ranged from 3 to 10 days and 2 sows showed no signs of oestrus and had not ovulated by Days 11 and 16 after weaning. Prolactin concentrations in plasma decreased significantly (P less than 0.001) and reached basal levels 1-2 h after weaning in all sows whilst plasma progesterone concentrations remained basal until approximately 30 h after the preovulatory LH surge in sows that ovulated. Elevated concentrations of prolactin or progesterone during the post-weaning period were, therefore, not responsible for delayed restoration of cyclicity. Overall, mean LH concentrations rose significantly (P less than 0.001) from 0.22 +/- 0.02 during the 12-h period before weaning to 0.38 +/- 0.03 ng/ml during the 12-h post-weaning period. After weaning, pulsatile and basal LH secretions were markedly increased for sows that showed an early return to oestrus (less than or equal to 4 days) compared with sows showing a longer weaning to oestrus interval but a correlation did not exist between either of these LH characteristics and the time taken to resume cyclicity. Mean LH concentrations before weaning were, however, inversely related (r = -0.649; P less than 0.05) to the weaning to oestrus interval. Overall, mean FSH concentrations rose significantly (P less than 0.001) from 151.1 +/- 6.2 (s.e.m.) ng/ml in the 12-h period immediately before weaning to 187.7 +/- 9.7 ng/ml in the subsequent 12-h period but there was no correlation between FSH concentrations, before or after weaning, and the interval from weaning to oestrus. However, a significant correlation was apparent between ovulation rate and peak concentrations of the rise in FSH after weaning (r = 0.746; P less than 0.05) and overall mean FSH values (r = 0.645; P less than 0.05). It is concluded that both LH and FSH concentrations in peripheral blood rose in response to removal of the suckling stimulus at weanling. The increase in LH pulse frequency associated with weaning was not directly related to the weaning to oestrus interval although a specific pattern of LH secretion was observed in sows showing an early return to oestrus (less than or equal to 4 days).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Intervals to estrus and ovulation in weaned sows depend partially on the diameter of ovarian follicles at weaning. The objective was to determine if follicular diameter in sows could be increased by a 48h period of GnRH infusion before weaning and whether this pre-weaning growth would advance follicular development after weaning. The posterior vena cava was cannulated in eight sows at 10+/-1 day after farrowing. Sows were randomly assigned to receive intravenous treatment with either 2mL of GnRH (1microg/mL; n=4) or 2mL of saline (n=4) every 0.5h for 48h beginning 94h before weaning. The average follicular diameter and the number of follicles within diameter classes were determined daily by ultrasonography. Serum LH concentrations increased on the first infusion day but serum LH was equal to control on the last infusion day (P<0.077). The GnRH infusion increased the average diameter of ovarian follicles (P<0.001). Serum estradiol increased (P<0.001) and serum FSH decreased (P<0.016) coincident with GnRH-induced follicular development but these changes were reversed within 24h after the end of the infusion period. Follicles that grew in response to GnRH regressed and were replaced by a new population of follicles within 4 days after weaning. Within the experimental model for the present study, a GnRH infusion increased follicular growth in lactating sows but follicles could not be sustained beyond the end of GnRH infusion.  相似文献   

11.
In Exp. 1, injections of 10 ml bovine follicular fluid (bFF, i.v. or s.c.), given twice daily for 3 days after injection of a luteolytic dose of PGF-2 alpha, delayed the onset of oestrus in 3 of 6 heifers to 8 or 9 days after PGF-2 alpha, as compared with 2 or 3 days after PGF-2 alpha in control heifers. Mean plasma concentrations of FSH and LH during the injection period were not different from those in saline-injected heifers. In Exp. 2, i.v. injections of 20 ml bFF twice daily for 3 days uniformly delayed oestrus to 8 days after PGF-2 alpha (N = 4) and injections of 20 ml bFF i.v. every 6 h for 24h on the day of PGF-2 alpha injection delayed oestrus to 5.0 +/- 0.6 days after PGF-2 alpha as compared with 2.8 +/- 0.3 days for control heifers. In both treatment groups, plasma concentrations of FSH were suppressed during the injection period and increased transiently after treatment, but plasma concentrations of LH during the injection period were not different from those of control heifers. Plasma levels of oestradiol in heifers given bFF remained basal for 2 or 3 days after treatment, then increased several days before the delayed oestrus, in a manner similar to that in control heifers, and elicited normal preovulatory surges of LH and FSH. Plasma concentrations of progesterone and the length of the next oestrous cycle were normal, indicating formation of functional corpora lutea. Therefore, bFF treatments appear to delay oestrus by selectively suppressing plasma FSH, without affecting LH, and delaying the development of the preovulatory follicle. These results suggest that FSH may be critical to support the growth and development of the preovulatory follicle after luteolysis in cows.  相似文献   

12.
Oocyte maturation inhibitor (OMI), inhibin, progesterone and oestradiol 17 beta concentrations were measured in fluid collected from small (less than 3 mm), medium size (3-6 mm) and large (greater than 6 mm) porcine ovarian follicles, which were obtained on Days 5, 10, 15 and 18 of the oestrous cycle and at 24 h after the onset of oestrus. Concentrations of OMI decreased with increasing follicle diameter (P less than 0.05), independent of the stage of the oestrous cycle. Concentrations of inhibin showed a tendency to decrease with increasing follicle diameter on Days 10, 15 and 18, but not on Day 5 of the cycle. Concentrations of OMI and inhibin in the largest follicles were low before the onset of oestrus, and were essentially unaltered 24 h later. A positive correlation was found between OMI and inhibin concentrations, whereas the correlation between inhibin concentration and log (progesterone concentrations) was negative.  相似文献   

13.
The aim of this study was to characterize the immediate effects of heat stress on plasma FSH and inhibin concentrations, and its involvement in follicular dynamics during a complete oestrous cycle, and to examine a possible delayed effect of heat stress on follicular development. Holstein dairy cows were oestrous synchronized and randomly assigned to either cooled (n = 7) or heat-stressed (n = 6) treatment groups. During a complete oestrous cycle, control cows, which were cooled, maintained normothermia, whereas heat-stressed cows, which were exposed to direct solar radiation, developed hyperthermia. At the end of this oestrous cycle (treated cycle), both groups were cooled and maintained normothermia for the first 10 days of the subsequent oestrous cycle. Throughout this period, follicular development was examined by ultrasonography, and plasma samples were collected. During the second follicular wave of the treated oestrous cycle, a significantly larger cohort of medium sized follicles (6-9 mm) was found in heat-stressed cows than in cooled cows (P < 0.05). The enhanced growth of follicles in this wave in heat-stressed cows was associated with a higher plasma FSH increase which lasted 4 more days (days 8-13 of the oestrous cycle; P < 0.05), and coincided with a decrease in the plasma concentration of immunoreactive inhibin (days 5-18 of the oestrous cycle; P < 0.05). During the follicular phase (days 17-20 of the treated cycle), heat-stressed cows showed an increase in the number of large follicles (>/= 10 mm), and the preovulatory plasma FSH surge was significantly higher in heat-stressed cows than in cooled cows (P < 0.01). The effect of heat stress was also observed during the first follicular wave of the subsequent cycle: the postovulatory plasma FSH concentration was higher (P < 0.01), but fewer medium follicles developed, and the first follicular wave decreased at a slower rate in previously heat-stressed cows than in cooled cows (0.40 and 0.71 follicles per day, respectively). This study shows both immediate and delayed effects of heat stress on follicular dynamics, which were associated with high FSH and low inhibin concentrations in plasma. These alterations may have physiological significance that could be associated with low fertility of cattle during the summer and autumn.  相似文献   

14.
The objective of this study was to assess the effect of ovine follicular fluid (FF) treatment (with or without FSH replacement) during the late follicular phase on plasma concentrations of gonadotrophins and the development of the ovulatory follicle. Ovarian steroid secretion and expression of mRNA encoding inhibin alpha and beta A, beta B subunits, P450 aromatase and P450 17 alpha-hydroxylase were used as endpoints. After induction of luteolysis by injection of 100 micrograms cloprostenol on days 10-12, Scottish Blackface ewes were allocated to one of three groups: (1) control (n = 7): no further treatment; (2) FF (n = 9): subcutaneous injections of 3 ml steroid-free ovine follicular fluid at 9 h intervals, 18 and 27 h after cloprostenol injection; (3) FF + FSH (n = 8): injections of follicular fluid as above plus subcutaneous injections of 0.36 iu ovine FSH at 6 h intervals, 18, 24, and 30 h after cloprostenol injection. Jugular venous blood samples were obtained via indwelling cannulae at 6 h intervals from 0 to 36 h after cloprostenol injection, and at 10 min intervals from 12 to 18 h (control phase) and from 30 to 36 h after cloprostenol injection (treatment phase). At laparotomy, 36 h after cloprostenol injection, ovarian venous blood was collected and ovaries were removed and processed for in situ hybridization. Plasma concentrations of FSH, luteinizing hormone (LH) and oestradiol were determined by radioimmunoassay. Follicular fluid treatment resulted in a decrease (P < 0.001) in FSH concentrations associated with an acute decrease in ovarian steroid secretion (P < 0.01) and a specific depression in P450 aromatase, (P < 0.001), inhibin-activin beta B subunit (P < 0.05) and thecal LH receptor (P < 0.001) expression. Follicular fluid treatment had no effect on inhibin-activin alpha and beta A, subunit or P450 17 alpha-hydroxylase expression. FSH co-treatment with follicular fluid restored circulating FSH concentrations to normal values and reversed some of the effects of follicular fluid (androstenedione, testosterone and progesterone secretion, and inhibin beta B and thecal LH receptor expression) but not oestradiol secretion or P450 aromatase expression. It was concluded that the actions of follicular fluid are mediated via both central effects on pituitary FSH secretion and by direct ovarian effects on granulosa cell aromatase activity. The results indicate that follicular fluid contains a factor that inhibits aromatase activity of granulosa cells directly and may play a role in the selection of the dominant follicle.  相似文献   

15.
The timing and dosage of oestradiol benzoate injected after weaning was critical with respect to the pattern of behavioural oestrus and the ovarian stimulation achieved; treatment on the day of weaning (Day 0) and Day 1 with 60 micrograms oestradiol benzoate/kg body wt produced poor ovulatory responses and abnormal oestrous behaviour. Treatment on Day 2 with 30 micrograms oestradiol benzoate/kg resulted in consistent oestrus and ovulatory responses although the ovulation rates (10 . 6 +/- 1 . 1 in 3-week and 12 . 2 +/- 1 . 7 in 5-week weaned sows) were below those expected in fertile untreated sows weaned at these times. The timing of the preovulatory LH surge (53 . 6 +/- 2 h after oestradiol benzoate) was closely synchronized in all sows and a similar synchronous rise in plasma progesterone concentrations 100 +/- 4 h after oestradiol benzoate suggests a similar synchrony of ovulation. The magnitude of the LH and FSH responses to oestradiol benzoate were similar to those that occur in untreated sows and similar differences also existed in gonadotrophin secretion related to the length of lactation.  相似文献   

16.
The inhibitory effects of follicular fluid on FSH secretion were similar in gonadectomized male and female sheep, and in the anoestrous and breeding seasons. Significant suppression of LH was variable and was observed only at the highest dose of follicular fluid when suppression rarely exceeded 50% of pretreatment values. Basal plasma FSH and LH concentrations were higher in castrated males than in ovariectomized females in both seasons. Plasma FSH concentrations in gonadectomized males and females and LH concentrations in the males were lower in the anoestrous than the breeding season. Therefore, in the absence of the gonads, sex and photoperiod can influence hypothalamic control of basal pituitary gonadotrophin secretion in males and females, whereas the feedback effect of non-steroidal factors in follicular fluid (inhibin) on FSH secretion is not influenced by photoperiod or sex.  相似文献   

17.
Hormone concentrations and oestrous cycle patterns were studied in five chronically cannulated gilts. During oestrous cycles that were unaffected by stress, plasma oestrogen concentrations remained at basal luteal phase levels (10 to 30 pg/ml) until plasma progesterone had decreased to less than 2 ng/ml. The pre-oestrus surge of oestrogen ranged from 40 to 80 pg/ml. Plasma corticoid concentrations varied randomly and were not related to oestrogen, progesterone concentrations, or the stage of the oestrous cycle. There was, however, evidence of a positive relationship between elevated corticoid levels and observed stressful events. The stress of surgery or illness acting during the follicular phase of the oestrous cycle delayed the onset of oestrus, and corticoid levels were frequently elevated on these occasions. Elevated plasma corticoid concentrations in response to ACTH treatment were associated with either a change in the timing of or a suppression of the pre-oestrus LH peak. Altering the timing of the LH peak resulted in the formation of large partially luteinized ovarian cysts, while suppressing LH interfered with follicular development and led to small ovarian cysts. These experiments suggest that stress acting via the adrenal gland may play a role in the aetiology of infertility in sows.  相似文献   

18.
Total thyroxine in plasma was studied during pregnancy, lactation and during the post weaning period. The ovarian activity was monitored by progesterone determinations, and oestrous symptoms were recorded. In the two sows studied during pregnancy there was a distinct decrease in total thyroxine values in the last month of pregnancy, reaching a minimum about the time of farrowing. Total thyroxine values stayed low during lactation, but from about the time of weaning and during the following two weeks the concentrations increased rapidly. There was no difference in the thyroxine pattern in sows resuming ovarian activity within normal time (10 days) after weaning (72 sows) compared with sows with delayed resumption of ovarian activity (19 sows). The thyroxine level after weaning did not differ between sows with “silent 11631” and sows with overt oestrus. Primiparous and pluriparous sows had also similar thyroxine values after weaning. Sows weaned in January—June had a little higher thyroxine concentrations after weaning than sows weaned in July—December. There was a significant negative correlation between number of suckling piglets and thyroxine concentrations before weaning. Free thyroxine index was calculated in some selected samples. The results suggested that the changes observed in total thyroxine reflect changes in the free thyroxine concentrations.  相似文献   

19.
Treatment of ewes with steroid-free ovine follicular fluid (oFF) during the follicular phase of the oestrous cycle results in the immediate inhibition of the ovarian secretion of oestradiol, inhibin and androgens. An experiment was conducted to determine whether this effect of oFF was due to inhibin, or to direct inhibition of ovarian function by other factors in oFF. Eight ewes in which the left ovary and vascular pedicle had been autotransplanted to a site in the neck were studied during the breeding season. Luteal regression was induced in all animals by injection of cloprostenol (100 micrograms i.m.; PG) on Day 10 of the luteal phase. The animals were divided into two groups (n = 4) and treated with either steroid-free oFF (oFF; 3 ml s.c.; 3.2 microgram p1-26 alpha inhibin/ml) or steroid-free oFF in which the inhibin content had been reduced by greater than 90% (IFoFF; 3 ml s.c.; 0.3 microgram p1-26 alpha inhibin/ml) by affinity chromatography, 24 and 36 h after PG. Samples of ovarian and jugular venous blood were collected at (i) intervals of 4 h from 16 h before until 120 h after PG and (ii) intervals of 10 min from 48 to 52 h after injection of PG to investigate the pattern of pulsatile secretion of ovarian hormones. All ewes had previously been monitored during a normal PG-induced follicular phase. Injection of oFF resulted in an increase (P less than 0.05) in the concentration of inhibin in jugular venous plasma and a profound (P less than 0.001) and prolonged decrease in the peripheral concentration of follicle-stimulating hormone (FSH). Injection of IFoFF had no significant effect on peripheral concentrations of inhibin or FSH in the first 24 h after treatment; thereafter inhibin concentrations fell (P less than 0.01) progressively until 40 h and then increased (P less than 0.01) until 72 h after treatment. In both treatment groups, however, within 24-36 h of treatment the concentration of FSH increased 5-10-fold (P less than 0.001) to a peak that occurred within 48-60 h and then declined to basal concentrations within 72-84 h of treatment. The concentration of luteinizing hormone (LH) in jugular venous plasma increased in both groups after treatment (P less than 0.01), although the rise after injection of oFF only started after 24 h. Thereafter, there was a progressive increase in the concentration of LH, peaks occurring 48-60 h after treatment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Pregnant rats were injected twice daily for 1-3 days (Days 13-16 of pregnancy) with various doses of ovine LH. Follicular maturation was determined by the ability of the follicles to ovulate in response to 10 i.u. hCG as well as by endogenous production of oestradiol-17 beta and inhibin. In control animals, no ovulation was induced by hCG given on Day 16 of pregnancy. An injection of hCG on Day 16 of pregnancy, however, induced ovulation in LH-treated animals (6.25-50.0 micrograms LH per injection, s.c. at 12-h intervals from Days 13 to 16). Concentrations of oestradiol-17 beta and inhibin activity in ovarian venous plasma increased after the administration of LH, indicating that development of ovulatory follicles had been induced. Abolishing the decline in plasma LH values therefore induced maturation of a new set of follicles or prevented the atresia of large antral follicles usually seen at this time of pregnancy. Plasma and pituitary concentrations of FSH decreased in LH-treated animals compared with those in control animals. Concentrations of progesterone, testosterone and oestradiol-17 beta in the peripheral plasma were not significantly different between the two groups. These results suggest that the increase in inhibin secretion from the ovary containing maturing follicles after LH treatment may suppress the secretion of FSH from the pituitary gland. These findings indicate that (1) the development of ovulatory follicles can be induced by the administration of exogenous LH during mid-pregnancy in the rat and (2) basal concentrations of FSH are enough to initiate follicular maturation even in the presence of active corpora lutea of pregnancy, when appropriate amounts of plasma LH are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号