首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
28Mg2+ uptake by rat islets was measured during incubation with various stimulators or inhibitors of insulin release. D-Glucose induced a dose-dependent increase in 28Mg2+ uptake after 10 min or 120 min. The threshold concentration was around 6 mM and the maximum effect was observed with 15-20 mM glucose. After 120 min 28Mg2+ uptake was also stimulated by the metabolized sugars mannose, N-acetylglucosamine or glyceraldehyde, was unaffected by the non-metabolized or poorly metabolized L-glucose, galactose, 3-O-methylglucose, 2-deoxyglucose, fructose or mannoheptulose and was inhibited by glucosamine. The effect of glucose was markedly impaired by mannoheptulose, glucosamine, aminooxyacetate and NH4Cl, but was only partially decreased by D600 or diazoxide, which were ineffective in a glucose-free medium. Tolbutamide or KCl slightly increased 28Mg2+ uptake. Alanine, leucine alone or with glutamine, and ketoisocaproate also stimulated 28Mg2+ uptake, whereas arginine and lysine decreased it. These changes in 28Mg2+ uptake, brought about by various modifiers of the B-cell function, are thus similar but not identical to the changes in Ca2+ uptake, and are not the consequence of insulin release. The stimulatory effect of glucose requires glucose metabolism by islet cells, but is only partially due to depolarization of the B-cell membrane.  相似文献   

2.
Leucine promotes glucose uptake in skeletal muscles of rats   总被引:2,自引:0,他引:2  
Soleus muscles isolated from normal rats were incubated to evaluate whether or not leucine promotes glucose uptake under insulin-free conditions, using a labeled 2-deoxyglucose uptake assay. Glucose uptake was promoted by 2mM leucine. A metabolite of leucine, alpha-ketoisocaproic acid (alpha-KIC), also exhibited a similar stimulatory effect, although this was not as potent as leucine. Stimulation of glucose uptake by leucine was completely canceled by pre-treatment with either 10 microM LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), or 6 microM GF109203X, a specific inhibitor of protein kinase C (PKC). No significant change was observed by pre-treatment with 1 microM rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR). These results suggest that leucine stimulates glucose transport in skeletal muscle via PI3-kinase and PKC pathways independently of the mammalian target of mTOR. They also suggest that leucine stimulates glucose transport by an insulin-independent mechanism.  相似文献   

3.
Summary When glucose and fructose are fermented separately, the uptake profiles indicate that both sugars are utilized at similar rates. However, when fermentations are conducted in media containing an equal concentration of glucose and fructose, glucose is utilized at approximately twice the rate of fructose. The preferential uptake of glucose also occurred when sucrose, which was first rapidly hydrolyzed into glucose and fructose by the action of the enzyme invertase, was employed as a substrate. Similar results were observed in the fermentation of brewer's wort and wort containing 30% sucrose and 30% glucose as adjuncts. In addition, the high levels of glucose in the wort exerted severe catabolite repression on maltose utilization in theSaccharmyces uvarum (carlsbergensis) brewing strain. Kinetic analysis of glucose and fructose uptake inSaccharomyces cerevisiae revealed aK m of 1.6 mM for glucose and 20 mM for fructose. Thus, the yeast strain has a higher affinity for glucose than fructose. Growth on glucose or fructose had no repressible effect on the uptake of either sugar. In addition, glucose inhibited fructose uptake by 60% and likewise fructose inhibited, glucose uptake by 40%. These results indicate that glucose and fructose share the same membrane transport components.  相似文献   

4.
To examine which branched-chain amino acids affect the plasma glucose levels, we investigated the effects of leucine, isoleucine, and valine (0.3 g/kg body weight p.o.) in normal rats using the oral glucose tolerance test (OGTT, 2 g/kg). A single oral administration of isoleucine significantly reduced plasma glucose levels 30 and 60 min after the glucose bolus, whereas administration of leucine and valine did not produce a significant decrease. Oral administration of valine significantly enhanced the plasma glucose level at 30 min after the glucose administration and leucine had a similar effect at 120 min. At each measurement timepoint, the insulin levels of the treated groups were lower than that of the control group. We then investigated the effects of leucine, isoleucine or valine at the same concentration (1 mM) on glucose metabolism in C(2)C(12) myotubes in the absence of insulin. Glucose consumption was elevated by 16.8% in the presence of 1 mM isoleucine compared with the control. Conversely, 1 mM leucine or valine caused no significant changes in glucose consumption in the C(2)C(12) myotubes. The 2-deoxyglucose uptake of C(2)C(12) myotubes significantly increased upon exposure to 1-10 mM isoleucine and 5-10 mM leucine. However, isoleucine caused no significant difference in glycogen synthesis in C(2)C(12) myotubes, although leucine and valine caused a significant increase in intracellular glycogen compared with the control. The isoleucine effect on glucose uptake was mediated by phosphatidylinositol 3-kinase (PI3K), but was independent of mammalian target of rapamycin (mTOR). These results suggest that isoleucine stimulates the insulin-independent glucose uptake in skeletal muscle cells, which may contribute to the plasma glucose-lowering effect of isoleucine in normal rats.  相似文献   

5.
The transport of sugars and amino acids into the mycelium of Erysiphe pisi DC. was investigated using two different systems, intact leaf discs and mycelial suspensions. Of the sugars tested, glucose was preferentially taken up by both uninfected and mildew-infected leaf discs, whereas glutamine was taken up by both tissues at a higher rate than lysine or aspartic acid. Leaf discs from infected tissue had a greater uptake capacity than those from healthy tissue for both sugars and amino acids. The uptake of glucose was inhibited more markedly than that of sucrose and fructose by 10 μ m carbonyl cyanide m -chlorophenylhydrazone (CCCP), 1 m m N -ethylmaleimide (NEM), 1 m m diethyl pyrocarbonate (DEPC) and 1 m m phenylglyoxal, whereas 1 m m PCMBS ( p -chloro-mercuribenzenesulphonic acid) inhibited sucrose uptake to the greatest extent. Uptake of glutamine, lysine and aspartic acid was inhibited similarly by CCCP (80%), NEM (20%), DEPC (70%) and PCMBS (60%). Additionally, leaf discs were used to determine which solutes could be taken up from leaf tissue by the fungus. The uptake of sugars into the mycelium was greater than that of amino acids.
Suspensions of powdery mildew mycelium accumulated glucose at about three times the rate of sucrose or fructose, and the amino acid glutamine was taken up at three times the rate of lysine or aspartic acid. Spores separated from the suspension had a low uptake capacity.
When the reducing sugar concentration of leaf apoplastic fluid was estimated, leaves infected by powdery mildew had much higher amounts in the apoplast, whereas the activity of acid invertase also appeared to be higher in apoplastic fluids from infected leaves. When apoplastic fluid samples were run on SDS gels, an invertase antibody detected two bands in samples from infected tissues that were not found in the uninfected samples.  相似文献   

6.
7.
Influxes of glucose, fructose and sucrose were characterised for coat cells of developing seeds of Phaseolus vulgaris L. and Vicia faba L. by monitoring uptake of [(14)C]sugars into excised seed-coat halves and two different protoplast populations derived from seed coats. Sugar influxes by the two populations of protoplasts were similar for each sugar species [sucrose > (fructose approximately glucose)] and hexoses competed with sucrose. Concentration-dependent influxes of all three sugars by excised seed coats could be described by a simple directly proportional relationship between concentration ([S]) and uptake rate (v) in the physiological range of sugar concentrations (v approximately A.[S]). Alternatively, with the exception of fructose influx by Vicia, all could be fitted to a Michaelis-Menten relationship, as could sucrose uptake by Vicia protoplasts. Apparent K(m) values were high ( approximately 100-500 mM) compared with those reported for other systems. Sucrose transport was distinct from glucose and fructose transport in both species. Sugar influx was decreased by p-chloromercuribenzenesulfonic acid, carbonylcyanide m-chlorophenylhydrazone and erythrosin B. These responses are consistent with sugar/H(+) symport acting to retrieve photoassimilates leaked to the apoplasm during post-sieve element transport within seed coats.  相似文献   

8.
The precise signal that regulates fructose transport in renal proximal tubule cells (PTCs) under high glucose conditions is not yet known although fructose has been recommended as a substitute for glucose in the diets of diabetic people. Thus, we investigated that effect of high glucose on fructose uptake and its signaling pathways in primary cultured rabbit renal PTCs. Glucose inhibited the fructose uptake in a time- and dose-dependent manner. A maximal inhibitory effect of glucose on fructose uptake was observed at 25 mM glucose after 48 h, while 25 mM mannitol and l-glucose did not affect fructose uptake. Indeed, 25 mM glucose for 48 h decreased GLUT5 protein level. Thus, the treatment of 25 mM glucose for 48 h was used for this study. Glucose-induced (25 mM) inhibition of fructose uptake was blocked by pertussis toxin (PTX), SQ-22536 (an adenylate cyclase inhibitor), and myristoylated amide 14-22 (a protein kinase A inhibitor). Indeed, 25 mM glucose increased the intracellular cAMP content. Furthermore, 25 mM glucose-induced inhibition of fructose uptake was prevented by neomycin or U-73122 (phospholipase C inhibitors) and staurosporine or bisindolylmaleimide I (protein kinase C inhibitors). In fact, 25 mM glucose increased the total PKC activity and translocation of PKC from the cytosolic to membrane fraction. In addition, PD 98059 (a p44/42 mitogen-activated protein kinase (MAPK) inhibitor) but not SB 203580 (a p38 MAPK inhibitor) and mepacrine or AACOCF3 (phospholipase A2 inhibitors) blocked 25 mM glucose-induced inhibition of fructose uptake. Results of Western blotting using the p44/42 MAPK and GLUT5 antibodies were consistent with the results of uptake experiments. In conclusion, high glucose inhibits the fructose uptake through cAMP, PLC/PKC, p44/42 MAPK, and cytosolic phospholipase A2 (cPLA2) pathways in the PTCs.  相似文献   

9.
Resting cells of Fusobacterium nucleatum 10953 (grown previously in a medium containing glucose) failed to accumulate glucose under aerobic or anaerobic conditions. However, the addition of glutamic acid, lysine, or histidine to anaerobic suspensions of cells caused the immediate and rapid accumulation of glucose. Except for the amino acid-dependent transport of galactose and fructose (the latter being transported at approximately one-third the rate of glucose), no other sugars tested were accumulated by the resting cells. Amino acid-dependent uptake of sugar(s) by F. nucleatum was abolished by exposure of cells to air, and under aerobic conditions the rates of fermentation of glutamic acid and lysine were less than 15% of the rates determined anaerobically. The energy necessary for active transport of the sugars (acetyl phosphate and ATP) is derived from the anaerobic fermentation of glutamic acid, lysine, or histidine. Competition studies revealed that glucose and galactose were mutual and exclusive inhibitors of transport, and it is suggested that the two sugars (Km = 14 microM) are translocated via a common carrier. The products of amino acid-dependent sugar transport were recovered from resting cells as ethanol-precipitable, high-molecular-weight polymers. Polymer formation by F. nucleatum, during growth in medium containing glucose or galactose, was confirmed by electron microscopy.  相似文献   

10.
This study was performed to gain insight about how fructose and glucose modulate dog spermatozoa motility in the absence of other motility-modulating factors. Incubation of dog spermatozoa from fresh ejaculates in a basal medium without sugars for 60 min at 37 degrees C induced a progressive decrease in the percentage of motile spermatozoa and in some mean motility parameters, such as mean velocity (VAP), linear coefficient (LIN) and dance (DNC), and an increase in the mean frequency of head displacement (BCF). This indicates a progressive loss of linearity and an increase in oscillatory movement. Addition of 10 mM fructose prevented these effects. Incubation in a basal medium with 10 mM glucose for 60 min at 37 degrees C provoked a fast and intense decrease of LIN and a slight increase of DNC, inducing a less linear and more oscillatory mean movement. Neither fructose nor glucose modified the percentage of motile spermatozoa. The response to both sugars was dose-dependent, with differences appearing at concentrations as low as 1 mM. An analysis of the spermatozoa subpopulation placed above the 95th percentile of the whole population and a factorial analysis of the data indicated that the changes in the mean values of the motility parameters were mainly due to a specific motile subpopulation that had a strong reaction to the two sugars. Our results indicate that fructose, at concentrations from 1 to 10 mM, induced a more linear and less oscillatory motility pattern than glucose. Moreover, from our results we suggest the presence of motile dog sperm subpopulations with an increased sensitivity to fructose and glucose.  相似文献   

11.
In the gray mold fungus Botrytis cinerea, spore germination and plant infection are stimulated in the presence of nutrients, in particular sugars. Applied at micromolar concentrations, fructose is a more potent inducer of germination than glucose. To test whether preferred fructose uptake is responsible for this effect, and to study the mechanism of fructose transport in B. cinerea, a gene (frt1) encoding a fructose transporter was cloned. FRT1 is highly similar to recently identified fructose transporters of yeasts, but much less to other fungal hexose transporters characterized so far. By using a hexose uptake deficient yeast strain for expression, FRT1 was found to be a high affinity proton coupled symporter specific for fructose but not for glucose. B. cinerea frt1 disruption mutants were created and showed normal vegetative growth and plant infection, but a delay in fructose-induced germination when compared to wild-type. Sugar uptake experiments with both wild-type and mutant conidia showed a higher affinity for glucose than for fructose. Thus, we propose that the specific effect of fructose on germination is not due to transport but rather to an as yet unknown intracellular sensing.  相似文献   

12.
In Saccharomyces cerevisiae, glucose activation of cAMP synthesis requires both the presence of the G-protein-coupled receptor (GPCR) system, Gpr1-Gpa2, and uptake and phosphorylation of the sugar. In a hxt-null strain that lacks all physiologically important glucose carriers, glucose transport as well as glucose-induced cAMP signalling can be restored by constitutive expression of the galactose permease. Hence, the glucose transporters do not seem to have a regulatory function but are only required for glucose uptake. We established a system in which the GPCR-dependent glucose-sensing process is separated from the glucose phosphorylation process. It is based on the specific transport and hydrolysis of maltose providing intracellular glucose in the absence of glucose transport. Preaddition of a low concentration (0.7 mM) of maltose to derepressed hxt-null cells and subsequent addition of glucose restored the glucose-induced cAMP signalling, although there was no glucose uptake. Addition of a low concentration of maltose itself does not increase the cAMP level but enhances Glu6P and apparently fulfils the intracellular glucose phosphorylation requirement for activation of the cAMP pathway by extracellular glucose. This system enabled us to analyse the affinity and specificity of the GPCR system for fermentable sugars. Gpr1 displayed a very low affinity for glucose (apparent Ka = 75 mM) and responded specifically to extracellular alpha and beta D-glucose and sucrose, but not to fructose, mannose or any glucose analogues tested. The presence of the constitutively active Gpa2val132 allele in a wild-type strain bypassed the requirement for Gpr1 and increased the low cAMP signal induced by fructose and by low glucose up to the same intensity as the high glucose signal. Therefore, the low cAMP increases observed with fructose and low glucose in wild-type cells result only from the low sensitivity of the Gpr1-Gpa2 system and not from the intracellular sugar kinase-dependent process. In conclusion, we have shown that the two essential requirements for glucose-induced activation of cAMP synthesis can be fulfilled separately: an extracellular glucose detection process dependent on Gpr1 and an intracellular sugar-sensing process requiring the hexose kinases.  相似文献   

13.
The competitive inhibition of fructokinase by glucose has been proposed as the mechanism by which Zymomonas mobilis preferentially consumes glucose from mixtures of glucose and fructose and accumulates fructose when growing on sucrose. In this study, incorporation of radioactive fructose into biomass was used as a measure of fructose catabolism. It was determined that the rate of fructose incorporation by Z. mobilis CP4 was somewhat lower in the presence of an equimolar concentration of glucose but that the inhibition of fructokinase by glucose was not nearly as severe in vivo as was predicted from in vitro studies. Interestingly, addition of glucose to a culture of Z. mobilis CP4-M2, a glucokinaseless mutant, resulted in an immediate and nearly complete inhibition of fructose incorporation. Furthermore, addition of nonmetabolizeable glucose analogs had a similar effect on fructose catabolism by the wild-type Z. mobilis CP4, and fructose uptake by Z. mobilis CP4-M2 was shown to be severely inhibited by equimolar amounts of glucose. These results suggest that competition for fructose transport plays an important role in preferential catabolism of glucose from sugar mixtures. Indeed, the apparent K(infm) values for sugar uptake by Z. mobilis CP4 were approximately 200 mM for fructose and 13 mM for glucose. Other experiments supported the conclusion that a single facilitated diffusion transport system, encoded by the glf gene, is solely responsible for the uptake of both glucose and fructose. The results are discussed with regard to the hypothesis that the kinetics of sugar transport and phosphorylation allow the preferential consumption of glucose and accumulation of fructose, making the fructose available for the enzyme glucose-fructose oxidoreductase, which forms sorbitol, an important osmoprotectant for Z. mobilis when growing in the presence of high sugar concentrations.  相似文献   

14.
Fructose 1-phosphate kinase was partially purified from Clostridium difficile and used to develop specific assays of fructose 1-phosphate and fructose. The concentration of fructose 1-phosphate was below the detection limit of the assay (25 pmol/mg protein) in hepatocytes incubated in the presence of glucose as sole carbohydrate. Addition of fructose (0.05-1 mM) caused a concentration-dependent and transient increase in the fructose 1-phosphate content. Glucagon (1 microM) and ethanol (10 mM) caused a severalfold decrease in the concentration of fructose 1-phosphate in cells incubated with fructose, whereas the addition of 0.1 microM vasopressin or 10 mM glycerone, or raising the concentration of glucose from 5 mM to 20 mM had the opposite effect. All these agents caused changes in the concentration of triose phosphates that almost paralleled those of the fructose 1-phosphate concentration. Sorbitol had a similar effect to fructose in causing the formation of fructose 1-phosphate. D-Glyceraldehyde was much less potent in this respect than the ketose and its effect disappeared earlier. The effect of D-glyceraldehyde was reinforced by an increase in the glucose concentration and decreased by glucagon. Both fructose and D-glyceraldehyde stimulated the phosphorylation of glucose as estimated by the release of 3H2O from [2-3H]glucose, but the triose was less potent in this respect than fructose and its effect disappeared earlier. Glucagon and ethanol antagonised the effect of low concentrations of fructose or D-glyceraldehyde on the detritiation of glucose. These results support the proposal that fructose 1-phosphate mediates the effects of fructose, D-glyceraldehyde and sorbitol by relieving the inhibition exerted on glucokinase by a regulatory protein.  相似文献   

15.
Symbiotic dinitrogen fixation of legume nodules is fuelled by phloem-imported carbohydrates. These have to pass several cell layers to reach cells infected with Rhizobium bacteroids. It is unclear whether apoplastic steps are involved in carbohyd-rate translocation within the nodule. Protoplasts were isolated from the infected and uninfected cells of the central tissue of Vicia faba nodules using a recently developed protocol. These protoplasts were used to elucidate pathways for sugar transport in this tissue. Both types of protoplasts released protons into the medium. Acidification was inhibited by vanadate and erythrosin B. However, it was stimulated by fusicoccin only in uninfected cells. A symport of sugars with protons can therefore be energized in both cell types. Uptake of 14C-labelled sugars was determined using a phthalate centrifugation technique. Uninfected protoplasts accumulated glucose through high-affinity H+/glucose-symport that was not competitively inhibited by fructose or sucrose. Uninfected protoplasts also absorbed sucrose with biphasic kinetics. At 0.1, 1, and 10 mM sucrose, uptake was inhibited by CCCP. Fusicoccin did not stimulate the linear phase of sucrose uptake. Glucose inhibited sucrose uptake nearly completely. This was not related to sucrose cleavage in the medium because sucrose was absorbed at a much higher rate than glucose, and glucose concentration did not increase in sucrose-containing protoplast suspensions. By contrast with uninfected protoplasts, infected cells did not show transporter-mediated glucose or sucrose uptake. The findings underline a role of uninfected cells in sugar translocation. Infected cells are not apoplastically supplied with sugars and possibly depend on uninfected cells for carbon supply.  相似文献   

16.
Intestinal development is typically studied using omnivores. For comparative purposes, we examined an altricial carnivore, the mink (Mustela vison). In mink, intestinal dimensions increase up to 8 wk after birth and then remain constant (length) or decrease (mass) into maturity despite continuing gains in body mass. Rates of glucose and fructose transport decline after birth for intact tissues but increase for brush-border membrane vesicles (BBMV). Rates of absorption for five amino acids that are substrates for the acidic (aspartate), basic (lysine), neutral (leucine and methionine), and imino acid (proline) carriers increase between birth and 24 h for intact tissues before declining, but increase after 2 wk for BBMV. The proportion of BBMV amino acid uptake that is Na(+)-dependent increases during development but for aspartate is nearly 100% at all ages. Tracer uptake by BBMV can be inhibited by 100 mmol/l of unlabeled amino acid, except for lysine. BBMV uptake of the dipeptide glycyl-sarcosine does not differ between ages, is not Na(+) dependent, and is only partially inhibited by 100 mmol/l unlabeled dipeptide. Despite the ability to rapidly and efficiently digest high dietary loads of protein, rates of amino acid and peptide absorption are not markedly higher than those of other mammals.  相似文献   

17.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

18.
Dissociated cells of the R3230AC mammary tumor were found to take up glucose by diffusion and by a passive carrier system. Using labeled 3-O-methylglucose as the probe, the following properties of the passive carrier were identified: (1) specificity for glucose, (2) competition by galactose and mannose but not by mannitol and fructose, (3) inhibition by phloretin but not by phloridzin, (4) temperature sensitivity, and (5) a Km for transport of 3-4 mM. The effects of insulin in vitro on carrier-mediated glucose transport were investigated in tumor cells from diabetic rats. At 10-9 M insulin, a time-related decrease in v for transport was observed resulting in an increased calculated Km (2- to 3-fold increase after 60-90 min incubation with insulin); only slight effects on V were obtained. This unusual response in v to insulin was observed when glucose was present in the medium at 2 mM and 5 mM, but not at 20 mM glucose. The effect of insulin to decrease the v was dose-related, with the major effects seen between 10-10M and 10-8M. The apparent decrease in glucose entry in vitro may in part explain the ability of insulin to inhibit growth of this tumor in vivo.  相似文献   

19.
1. The interaction of insulin and isometric exercise on glucose uptake by skeletal muscle was studied in the isolated perfused rat hindquarter. 2. Insulin, 10 m-i.u./ml, added to the perfusate, increased glucose uptake more than 10-fold, from 0.3-0.5 to 5.2-5.4 mumol/min per 30g of muscle in hindquarters of fed and 48h-starved rats respectively. In contrast, it did not stimulate glucose uptake in hindquarters from rats in diabetic ketoacidosis. 3. In the absence of added insulin, isometric exercise, induced by sciatic-nerve stimulation, increased glucose uptake to 4 and 3.4 mumol/min per 30g of muscle in fed and starved rats respectively. It had a similar effect in rats with moderately severe diabetes, but it did not increase glucose uptake in rats with diabetic ketoacidosis or in hindquarters of fed rats that had been "washed out" with an insulin-free perfusate. Insulin, at concentrations which did not stimulate glucose uptake in resting muscle, restored the stimulatory effect of exercise in these situations. 4. The stimulation of glucose uptake by exercise was independent of blood flow and the degree of tissue hypoxia; also it could not be reproduced by perfusing resting muscle with a medium previously used in an exercise experiment. 5. At rest glucose was not detectable in muscle cell water of fed and starved rats even when perfused with insulin. In the presence of insulin, a small accumulation of glucose, 0.25 mM, was noted in the muscle of ketoacidotic diabetic rats, suggesting inhibition of glucose phosphorylation, as well as of transport. 6. During exercise, the calculated intracellular concentration of glucose in the contracting muscle increased to 1.1-1.6mM in the fed, starved and moderately diabetic groups. Insulin significantly increased the already high rates of glucose uptake by the hindquarters of these animals but it did not alter the elevated intracellular concentration of glucose. 7. In severely diabetic rats, exercise did not cause glucose to accumulate in the cell in the absence of insulin. In the presence of insulin, it increased glucose uptake to 6.1 mumol/min per 30g of muscle and intracellular glucose to 0.72 mM. 8. The data indicate that the stimulatory effect of exercise on glucose uptake requires the presence of insulin. They suggest that in the absence of insulin, glucose uptake is not enhanced by exercise owing to inhibition of glucose transport into the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号