首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host range among the African trypanosomes, protozoa that cause fatal diseases both in humans and livestock, may be, in part, regulated by toxic properties associated with host high density lipoproteins (HDL). High density lipoproteins from hosts resistant (baboon, human) or susceptible (rabbit, rat) to Trypanosoma brucei infection were isolated and their trypanocidal activity was determined in in vitro cell lysis assays. Rabbit and rat HDL were not cytotoxic while baboon and human HDL rapidly lysed trypanosomes within 2 h at 37 degrees C. Analysis of the phospholipid composition of HDL preparations from these species suggested a correlation between trypanocidal activity and low phosphatidylinositol content. Phospholipase digestion of HDL resulted in a loss of trypanocidal activity, indicating the importance of native phospholipids in maintaining this biological activity of HDL. Cell lysis and loss of trypanosome infectivity induced by baboon HDL could be inhibited either by addition of rabbit or rat HDL to the incubation medium or by addition of purified phospholipids, phosphatidylinositol being the most effective inhibitor. Although the mechanism by which HDL lyses trypanosomes remains to be elucidated, these results suggest an important role for phospholipids in determining the specificity of this cytotoxic property of HDL.  相似文献   

2.
The activity of lectins in different species of tsetse was compared in vivo by the time taken to remove all trypanosomes from the midgut following an infective feed and in vitro by agglutination tests. Teneral male Glossina pallidipes Austen, G. austeni Newstead and G. p. palpalis R-D. removed 50% of all Trypanosoma brucei rhodesiense Stephens & Fantham infections within 60 h. A 'refractory' line of G. m. morsitans Westwood took 170 h to kill 50% infections while a 'susceptible' line of the same species failed to kill 50%. Agglutination tests with midgut homogenates showed differences between fly stocks which accorded with differences in rate of trypanosome killing in vivo. Flies fed before an infective feed were able to remove trypanosomes from their midguts more quickly than flies infected as tenerals. Increasing the period of starvation before infection increased the susceptibility to trypanosome infection of non-teneral flies. Teneral flies showed little agglutinating activity in vitro, suggesting that lectin is produced in response to the bloodmeal. Feeding flies before infection also abolished the differences in rate of trypanosome killing found between teneral 'susceptible' and 'refractory' G. m. morsitans, suggesting that maternally inherited susceptibility to trypanosome infection is a phenomenon limited to teneral flies. Electron micrographs of midguts of G. m. morsitans suggest that procyclic trypanosomes are killed by cell lysis, presumably the result of membrane damage caused by lectin action.  相似文献   

3.
We studied the effects of polyamines, which are necessary for proliferation and antioxidation in Trypanosoma brucei gambiense Wellcome strain (WS) and Trypanosoma brucei brucei ILtat 1.4 strain (IL). No difference was found in activity of ornithine decarboxylase (ODC), a key enzyme in polyamine synthesis in trypanosomes, in both strains maintained in vitro; higher (P < 0.05) ODC values were found in IL in vivo. However, WS in vivo exhibited higher proliferation rates with higher spermidine content and decreased host survival times than IL. The in vitro proliferation and polyamine contents of WS increased with the addition of polyamine to the 1-difluoromethylornithine culture medium, but not IL. These results suggested that WS uses extracellular polyamine for proliferation. In the in vitro culture, WS was less tolerant of hydrogen peroxide (oxidative stress) than IL, and malondialdehyde levels in WS were higher than in IL. The expression of trypanothione synthetase mRNA in WS in vitro was higher than in IL. These results suggest that IL is dependent on the synthesis of polyamines for proliferation and reduction of oxidative stress, whereas WS is dependent on the uptake of extracellular polyamines. A thorough understanding of the differences in the metabolic capabilities of various trypanosomes is important for the design of more effective medical treatments.  相似文献   

4.
The African trypanosome, Trypanosoma brucei brucei causes a fatal wasting disease in livestock but does not ordinarily infect humans, apparently because this unicellular parasite is lysed by high density lipoproteins (HDL) in human serum. To assess whether there is a specific active constituent in trypanolytic HDL, we have systematically compared the cytotoxic action on T.b.brucei in vitro of native and delipidated HDL, and of individual apolipoproteins, from nonpermissive hosts (human and baboon) with their counterparts from susceptible hosts (cattle and sheep). When suspensions of trypanosomes were incubated for 2 h at 37 degrees C with human or baboon plasma most cells were lysed, but not with bovine or sheep plasma. Similarly, HDL isolated from human and baboon plasma were trypanolytic (typically about 95% and 60% lysis, respectively, at 1 mg protein/ml), whereas bovine and sheep HDL were benign (less than 8% lysis). Subfractionation of human HDL by serial isopycnic ultracentrifugation and by heparin-Sepharose affinity chromatography established that the denser and smaller particles had greater trypanolytic activity both in vitro and in vivo. When human HDL was delipidated, the trypanocidal activity was associated with the water-soluble protein (apolipoprotein) fraction and not with the lipid constituents. Bovine apolipoproteins were also weakly trypanolytic in free solution (20-40% lysis), but not when complexed with cholesterol-phospholipid liposomes (less than 10% lysis). The major apolipoprotein of human HDL, apolipoprotein (apo) A-I had full trypanolytic activity (89-95% lysis at 1 mg protein/ml) when purified, whether in solution or incorporated into liposomes, but other apolipoproteins isolated from human HDL, including apoA-II, apoC, and apoE, were nontrypanolytic. Purified baboon apoA-I was also trypanolytic, though less potent than human apoA-I, but apoA-I from permissive hosts (cattle and sheep) was inactive when presented in liposomes. Incubation of bovine or sheep HDL with purified human apoA-I, and subsequent separation of the HDL by ultracentrifugation, produced chimeric HDL containing significant amounts of the human apolipoprotein; these particles showed appreciable trypanolytic activity. By contrast, human HDL particles in which about 70% of the apoA-I had been displaced with apoA-II had markedly reduced lytic properties compared to the native HDL (30% versus 80% lysis at 0.6 mg total protein/ml). We tentatively conclude that the trypanolytic activity of native human or baboon plasma resides in the apoA-I content of the HDL particles and that, conversely, bovine and sheep plasma are inactive because the apoA-I polypeptide present in their HDL lacks trypanocidal activity.  相似文献   

5.
We have previously shown that 3-nitro-1H-1,2,4-triazole-based amines demonstrate significant trypanocidal activity, in particular against Trypanosoma cruzi, the causative parasite of Chagas disease. In the present work we further expanded our research by evaluating in vitro the trypanocidal activity of nitrotriazole-based piperazines and nitrotriazole-based 2-amino-1,3-benzothiazoles to establish additional SARs. All nitrotriazole-based derivatives were active or moderately active against T. cruzi; however two of them did not fulfill the selectivity criteria. Five derivatives were active or moderately active against Trypanosoma brucei rhodesiense while one derivative was moderately active against Leishmania donovani. Active compounds against T. cruzi demonstrated selectivity indexes (toxicity to host cells/toxicity to T. cruzi amastigotes) from 117 to 1725 and 12 of 13 compounds were up to 39-fold more potent than the reference compound benznidazole. Detailed SARs are discussed.  相似文献   

6.
Bloodstream forms of Trypanosoma brucei brucei were cultivated in the presence and absence of thiamine (vitamin B1) and pyridoxine (vitamin B6). The vitamins do not change growth behaviour, indicating that Trypanosoma brucei is prototrophic for the two vitamins even though in silico no bona-fide thiamine-biosynthetic genes could be identified in the T. brucei genome. Intracellularly, thiamine is mainly present in its diphosphate form. We were unable to detect significant uptake of [3H]thiamine and structural thiamine analogues such as pyrithiamine, oxithiamine and amprolium were not toxic for the bloodstream forms of T. brucei, indicating that the organism does not have an efficient uptake system for thiamine and its analogues. We have previously shown that, in the fission yeast Saccharomyces pombe, the toxicity of melarsen oxide, the pharmacologically active derivative of the frontline sleeping sickness drug melarsoprol, is abolished by thiamine and the drug is taken up by a thiamine-regulated membrane protein which is responsible for the utilization of thiamine. We show here that thiamine also has weak effects on melarsen oxide-induced growth inhibition and lysis in T. brucei. These effects were consistent with a low affinity of thiamine for the P2 adenosine transporter that is responsible for uptake of melaminophenyl arsenicals in African trypanosomes.  相似文献   

7.
The susceptibility of procyclic, trypsinized, or bloodstream forms of Trypanosoma brucei to lysis by hydrogen peroxide and by activated mouse macrophages was investigated in vitro using the release of biosynthetically labeled proteins as an assay. Uncoated parasites were more resistant than coated bloodstream forms in both cases. Macrophage trypanolysis upon triggering with phorbol myristate acetate occurred extracellularly and seemed to depend on the release of hydrogen peroxide, as it was prevented by catalase. However, when presented trypanosomes in presence of fresh immune serum which was itself lytic, macrophages did not show any additional lytic effect, and phagocytosis was related to already damaged parasites.  相似文献   

8.
Drug resistance of trypanosomes is now a problem, but its underlying mechanisms are not fully understood. Cellular uptake of the major trypanocidal drugs is thought to occur through an adenosine transporter. The adenosine transporter-1 gene, TbAT1, encoding a P2-like nucleoside transporter has previously been cloned from Trypanosoma brucei brucei, and when expressed in yeast, it showed very similar substrate specificity to the P2-nucleoside transporter, but could not transport diamidines (pentamidine and diminazene). We have cloned and sequenced a similar gene (TevAT1) from Trypanosoma evansi and found it to have 99.7% identity to the TbAT1 gene. To elucidate the role of the TevAT1 gene on diamidine trypanocidal effect, we genetically engineered T. evansi for conditional knock-out of the TevAT1 gene by RNA interference (RNAi). Induction of the RNAi resulted in 10-fold depletion of TevAT1 mRNA, with concomitantly significant resistance to diminazene aceturate (berenil). The induced parasites propagated normally and attained peak cell density at an in vitro concentration of berenil, 5.5-fold higher than the IC(100) of the wild-type. TevAT1 knock-out had no effect on the trypanocidal activity of suramin and antrycide, but conferred some resistance to samorin. Our findings validate the significance of the TevAT1 adenosine transporter-1 gene in mediating the trypanocidal effect of diamidines in T. evansi. Further, we show for the first time that RNAi gene silencing in T. evansi can be induced using plasmids designed for T. brucei. We also demonstrate the usefulness of real-time PCR in rapidly quantifying mRNA levels in trypanosomes.  相似文献   

9.
Studies were made of infection rates of trypanosomes in the tsetse fly Glossina morsitans morsitans Westwood (Diptera: Glossinidae) when maintained in vivo (rabbits) or in vitro on high quality, gamma-irradiated, sterile defibrinated bovine blood, obtained from the Entomology Unit of the International Atomic Energy Agency (IAEA). For both Trypanosoma congolense Broden and T. b. brucei Plimmer & Bradford, in vitro maintenance significantly reduced the proportion of flies that developed mature metacyclic trypanosome infections.  相似文献   

10.
Trypanosoma brucei brucei are lysed when incubated in vitro in a mixture of bovine serum and polyamine. Normal bovine serum alone or polyamine alone does not show any trypanocidal activity. The bovine serum in the mixture can be replaced by purified polyamine oxidase, and addition of polyamine oxidase inhibitors blocks trypanolysis. Using this in vitro lysis test, it is shown that West African cattle which are resistant naturally to trypanosomiasis have a higher trypanolytic activity in their serum than do trypanosensitive cattle (P less than 10(-5]. Seric trypanolytic activity of individual animals remains stable when tested over a period of 18 months; moreover, it is not modified by trypanosome infection. Higher levels of seric polyamine oxidase in resistant cattle were demonstrated also by enzymatic analysis. The factors responsible for trypanolysis have been analyzed. Oxidation of spermidine by polyamine oxidase leads to the production of unstable aldehydes, acrolein, ammonia, O2-, HO, and H2O2. Acrolein and H2O2 show strong trypanolytic activity while the other products do not appear to be toxic for trypanosomes. The physiological importance of polyamine oxidase mediated trypanolysis is unclear; even at peak parasitemia in cattle (10(7) organisms/ml) it can be calculated that trypanosomes would not release enough spermidine for the generation of sufficient quantities of toxic degradation products. Additional polyamines could be released in serum from tissues damaged as a result of the infection.  相似文献   

11.
Using an in vitro model of the human blood-brain barrier consisting of human brain microvascular endothelial cells we recently demonstrated that Trypanosoma brucei gambiense bloodstream-forms efficiently cross these cells via a paracellular route while Trypanosoma brucei brucei crosses these cells poorly. Using a combination of techniques that include fluorescence activated cell sorting, confocal and electron microscopy, we now show that some T.b. gambiense blood stream form parasites have the capacity to enter human brain microvascular endothelial cells. The intracellular location of the trypanosomes was demonstrated in relation to the endothelial cell plasma membrane and to the actin cytoskeleton. These parasites may be a terminal stage within a lysosomal compartment or they may be viable trypanosomes that will be able to exit the brain microvascular endothelial cells. This process may provide an additional transcellular route by which the parasites cross the blood-brain barrier.  相似文献   

12.
Analogs of the trypanocidal lead compound 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-yl acetate were prepared to extend the structure-activity relationship in this series of molecules, improve the in vivo antitrypanosomal activity of the lead, and determine whether ester prodrugs are needed to overcome the instability of the dihydroquinolin-6-ols. Two of the most active compounds identified in this study were 1-benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride and 1-(2-methoxy)benzyl-1,2-dihydro-2,2,4-trimethylquinolin-6-ol hydrochloride. These stable solids possessed low nanomolar IC50 values against Trypanosoma brucei rhodesiense STIB900 in vitro and provided cures in an early treatment acute mouse model of African trypanosomiasis when given ip at 50 mg/kg/day for four consecutive days.  相似文献   

13.
A series of 19 huprines has been evaluated for their activity against cultured bloodstream forms of Trypanosoma brucei and Plasmodium falciparum. Moreover, cytotoxicity against rat myoblast L6 cells was assessed for selected huprines. All the tested huprines are moderately potent and selective trypanocidal agents, exhibiting IC(50) values against T. brucei in the submicromolar to low micromolar range and selectivity indices for T. brucei over L6 cells of approximately 15, thus constituting interesting trypanocidal lead compounds. Two of these huprines were also found to be active against a chloroquine-resistant strain of P. falciparum, thus emerging as interesting trypanocidal-antiplasmodial dual acting compounds, but they exhibited little selectivity for P. falciparum over L6 cells.  相似文献   

14.
Trypanosoma brucei brucei is an important pathogen of domestic cattle in sub-Saharan Africa and is closely related to the human sleeping sickness parasites, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. However, T. b. brucei is non-infectious to humans. The restriction of the host range of T. b. brucei results from the sensitivity of the parasite to lysis by toxic human high density lipoproteins (HDL) (Rifkin, M. R. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 3450-3454). We show in this report that trypanosome lytic activity is not a universal feature of all human HDL particles but rather that it is associated with a minor subclass of HDL. We have purified the lytic activity about 8,000-fold and have identified and characterized the subspecies of HDL responsible for trypanosome lysis. This class of HDL has a relative molecular weight of 490,000, a buoyant density of 1.21-1.24 g/ml, and a particle diameter of 150-210 A. It contains apolipoproteins AI, AII, CI, CII, and CIII, and monoclonal antibodies against apo-AI and apo-AII inhibit trypanocidal activity. In addition to these common apolipoproteins, the particles also contain at least three unique proteins, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Treatment of the particles with dithiothreitol resulted in the disappearance of two of the proteins and abolished trypanocidal activity. Two-dimensional gel electrophoresis showed that these proteins were a disulfide-linked trimer of 45,000, 36,000, and 13,500-Da polypeptides and dimers of the 36,000- and 13,500-Da polypeptides or of 65,000- and 8,500-Da polypeptides. Studies on the lysis of T. b. brucei by the purified particle suggest that the lytic pathway may involve the uptake of the trypanocidal subspecies of HDL by endocytosis.  相似文献   

15.
It has been suggested that compounds affecting glycosylphosphatidylinositol (GPI) biosynthesis in bloodstream form Trypanosoma brucei should be trypanocidal. We describe cell-permeable analogues of a GPI intermediate that are toxic to this parasite but not to human cells. These analogues are metabolized by the T. brucei GPI pathway, but not by the human pathway. Closely related nonmetabolizable analogues have no trypanocidal activity. This represents the first direct chemical validation of the GPI biosynthetic pathway as a drug target against African human sleeping sickness. The results should stimulate further inhibitor design and synthesis and encourage the search for inhibitors in natural product and synthetic compound libraries.  相似文献   

16.
Bioguided-fractionation of a CH(2)Cl(2) extract of the stems of Uvaria klaineana (Annonaceae) led to isolation of klaivanolide, a novel bisunsaturated 7-membered lactone (5-acetoxy-7-benzoyloxymethyl-7H-oxepin-2-one), together with benzyl benzoate. Klaivanolide showed potent in vitro antileishmanial activity against both sensitive and amphotericin B-resistant promastigote forms of Leishmania donovani with IC(50) values of 1.75 and 3.12 microM, respectively. The compound also showed in vitro trypanocidal activity against trypomastigote forms of Trypanosoma brucei brucei GVR 35. Its structure was established by 1D and 2D NMR and other spectroscopic techniques.  相似文献   

17.
African trypanosomes of the Trypanosoma brucei group are agents of disease in man and animals. They present unique biochemical characteristics such as the need for preformed purines and have extensive salvage mechanisms for nucleoside recovery. In this regard we have shown that trypanosomes have a dedicated transporter for S-adenosylmethionine (AdoMet), a key metabolite in transmethylation reactions and polyamine synthesis. In this study we compared the apparent kinetics of AdoMet transport, cytosolic AdoMet pool formation, and utilization of AdoMet in protein methylation reactions using two isolates: Trypanosoma brucei brucei, a veterinary parasite, and Trypanosoma brucei rhodesiense, a human pathogen that is highly refractory and has greatly reduced susceptibility to standard trypanocidal agents active against T. b. brucei. The apparent Km values for [methyl-3H]AdoMet transport, derived by Hanes-Woolf analysis, for T. b. brucei was 4.2 and 10 mM for T. b. rhodesiense, and the Vmax values were 124 and 400 micromol/liter/min, respectively. Both strains formed substantial cytosolic pools of AdoMet, 1600 nmol/10(9) T. b. brucei and 3500 nmol/10(9) T. b. rhodesiense after 10 min incubation with 25 mM exogenous AdoMet. Data obtained from washed trichloroacetic acid precipitates of cells incubated with [methyl-3H]AdoMet indicated that the rate of protein methylation in T. b. brucei was fourfold greater than in T. b. rhodesiense. These results demonstrate that the unique rapid uptake and utilization of AdoMet by African trypanosomes is an important consideration in the design and development of new agents of potential use in chemotherapy.  相似文献   

18.
Nature has provided humans with a surprising means of protection against the African trypanosome Trypanosoma brucei brucei There is consensus, in that this singular trypanocidal factor is serum high-density lipoproteins (HDL). which the trypanosomes engulf through a physiological, receptor-mediated pathway for delivery to acidic intracellular vesicles. There is also controversy, however, in that the active particles and their essential cytotoxic elements are disputed, in part reflecting the ill-defined mechanism by which the parasites are finally killed. Here Patrick Lorenz, Bruno Betschart and Jim Owen discuss the possibilities for resolving these discrepancies and speculate on the prospects of exploiting this unexpected property of human HDL for protecting livestock.  相似文献   

19.
The trypanocidal activity of racemic mixtures of cis- and trans-methylpluviatolides was evaluated in vitro against trypomastigote forms of two strains of Trypanosoma cruzi, and in the enzymatic assay of T. cruzi gGAPDH. The cytotoxicity of the compounds was assessed by the MTT method using LLC-MK2 cells. The effect of the compounds on peroxide and NO production were also investigated. The mixture of the trans stereoisomers displayed trypanocidal activity (IC50 approximately 89.3 microM). Therefore, it was separated by chiral HPLC, furnishing the (+) and (-)-enantiomers. Only the (-)-enantiomer was active against the parasite (IC50 approximately 18.7 microM). Despite being inactive, the (+)-enantiomer acted as an antagonistic competitor. Trans-methylpluviatolide displayed low toxicity for LLC-MK2 cells, with an IC50 of 6.53 mM. Furthermore, methylpluviatolide neither inhibited gGAPDH activity nor hindered peroxide and NO production at the evaluated concentrations.  相似文献   

20.
The trypanocidal activity of normal human serum has been studied in vitro using Trypanosoma brucei as the test organism. The variables affecting the rate and extent of lysis, such as time, temperature, serum concentration, and pleomorphism of trypanosomes, are described. Trypanocidal titers of serum and serum fractions were quantitatively determined under standardized incubation conditions. Inactivation and/or removal of components of both the classical and alternate pathways of complement activation had no effect on the trypanocidal properties of human serum. The active factor was nondialyzable, present in plasma at equivalent levels to that in serum, and not removed by absorption with IgG fractions of antisera against human IgM or α2-macroglobulin. The trypanocidal factor could be inactivated by heat (65 C), dithiothreitol, urea, and trypsin. Gel filtration studies indicated that the trypanocidal activity eluted as a single protein with a molecular weight of about 500,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号