首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Hdmx protein restricts p53 activity in vivo and is overexpressed in a significant fraction of human tumors that retain the wild type p53 allele. An understanding of how Hdmx limits p53 activation and blocks apoptosis could therefore lead to development of novel therapeutic agents. We previously showed that Hdmx modulates tumor cell sensitivity to Nutlin-3a, a potent antagonist of the p53/Hdm2 interaction. In this report, we demonstrate that this also applies to MI-219, another Hdm2 antagonist. Thus, the inability to disrupt Hdmx/p53 complexes is a potential barrier to the efficacy of these compounds as single agents. We show that sensitivity to apoptosis in cells with high Hdmx levels is restored by combined treatment with Hdm2 and a Bcl-2 family member antagonist to activate Bax. The data are consistent with a model in which Hdmx attenuates p53-dependent activation of the intrinsic apoptotic pathway, and that this occurs upstream of Bax activation. Thus, selectively inhibiting Hdm2 and activating Bax is one effective strategy to induce apoptosis in tumors with high Hdmx levels. Our findings also indicate that preferential induction of apoptosis in tumor versus normal cells occurs using appropriate drug doses.  相似文献   

2.
3.
The p53 tumor suppressor protein has a major role in protecting the integrity of the genome. In unstressed cells, p53 is maintained at low levels by the ubiquitin-proteasome pathway. A balance between ubiquitin ligase activity (Hdm2, COP1, and Pirh2) and the ubiquitin protease activity of the Herpes virus-associated ubiquitin-specific protease (HAUSP) determines the half-life of p53. HAUSP also modulates p53 stability indirectly by deubiquitination and stabilization of Hdm2. The Hdmx protein affects p53 stability as well through its interaction with and regulation of Hdm2. Vice versa, Hdmx is a target for Hdm2-mediated ubiquitination and degradation. Here, we show that HAUSP also interacts with Hdmx, resulting in its direct deubiquitination and stabilization. HAUSP activity is required to maintain normal Hdmx protein levels. Therefore, the balance between HAUSP and Hdm2 activity determines Hdmx protein stability. Importantly, impaired deubiquitination of Hdmx/Hdm2 by HAUSP contributes to the DNA damage-induced degradation of Hdmx and transient instability of Hdm2.  相似文献   

4.
Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.  相似文献   

5.
6.
7.
The p53 tumor suppressor plays a major role in maintaining genomic stability. Its activation and stabilization in response to double strand breaks (DSBs) in DNA are regulated primarily by the ATM protein kinase. ATM mediates several posttranslational modifications on p53 itself, as well as phosphorylation of p53's essential inhibitors, Hdm2 and Hdmx. Recently we showed that ATM- and Hdm2-dependent ubiquitination and subsequent degradation of Hdmx following DSB induction are mediated by phosphorylation of Hdmx on S403, S367, and S342, with S403 being targeted directly by ATM. Here we show that S367 phosphorylation is mediated by the Chk2 protein kinase, a downstream kinase of ATM. This phosphorylation, which is important for subsequent Hdmx ubiquitination and degradation, creates a binding site for 14-3-3 proteins which controls nuclear accumulation of Hdmx following DSBs. Phosphorylation of S342 also contributed to optimal 14-3-3 interaction and nuclear accumulation of Hdmx, but phosphorylation of S403 did not. Our data indicate that binding of a 14-3-3 dimer and subsequent nuclear accumulation are essential steps toward degradation of p53's inhibitor, Hdmx, in response to DNA damage. These results demonstrate a sophisticated control by ATM of a target protein, Hdmx, which itself is one of several ATM targets in the ATM-p53 axis of the DNA damage response.  相似文献   

8.
9.
Upregulation of structurally homologous oncoproteins Hdm2 and Hdmx has been linked to the depletion or inactivation of their common regulation target the tumor suppressor p53 protein leading to the progression of cancer. The restoration of the p53 function, rendered suppressed or dormant by these negative regulators, establishes, therefore, a unique opportunity for a targeted induction of apoptosis in cancers that retain wild-type p53. While several small molecules have been reported to rescue the tumor suppressor by antagonizing the Hdm2–p53 interaction, these agents displayed limited application scope by being ineffective in tumors enriched with active Hdmx. Here, we describe the use of a genetic selection system and encoded library of conformationally pre-organized peptides to perform functional profiling of each regulator revealing specific recognition features that guide the antagonism of Hdm2–p53 and Hdmx–p53 interactions. Structure–activity relationship analysis of the most effective leads identified functional and structural elements mediating selective recognition of the two structurally related regulators, while providing convenient starting points for further activity optimization.  相似文献   

10.
Tetraploid (4N) cells are considered important in cancer because they can display increased tumorigenicity, resistance to conventional therapies, and are believed to be precursors to whole chromosome aneuploidy. It is therefore important to determine how tetraploid cancer cells arise, and how to target them. P53 is a tumor suppressor protein and key regulator of tetraploidy. As part of the “tetraploidy checkpoint”, p53 inhibits tetraploid cell proliferation by promoting a G1-arrest in incipient tetraploid cells (referred to as a tetraploid G1 arrest). Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In the current study, Nutlin-3a promoted a p53-dependent tetraploid G1 arrest in two diploid clones of the HCT116 colon cancer cell line. Both clones underwent endoreduplication after Nutlin removal, giving rise to stable tetraploid clones that showed increased resistance to ionizing radiation (IR) and cisplatin (CP)-induced apoptosis compared to their diploid precursors. These findings demonstrate that transient p53 activation by Nutlin can promote tetraploid cell formation from diploid precursors, and the resulting tetraploid cells are therapy (IR/CP) resistant. Importantly, the tetraploid clones selected after Nutlin treatment expressed approximately twice as much P53 and MDM2 mRNA as diploid precursors, expressed approximately twice as many p53-MDM2 protein complexes (by co-immunoprecipitation), and were more susceptible to p53-dependent apoptosis and growth arrest induced by Nutlin. Based on these findings, we propose that p53 plays novel roles in both the formation and targeting of tetraploid cells. Specifically, we propose that 1) transient p53 activation can promote a tetraploid-G1 arrest and, as a result, may inadvertently promote formation of therapy-resistant tetraploid cells, and 2) therapy-resistant tetraploid cells, by virtue of having higher P53 gene copy number and expressing twice as many p53-MDM2 complexes, are more sensitive to apoptosis and/or growth arrest by anti-cancer MDM2 antagonists (e.g. Nutlin).  相似文献   

11.
Compounds that stabilize p53 could suppress tumors providing a additional tool to fight cancer. Mdm2, and the human ortholog, Hdm2 serve as ubiquitin E3 ligases and target p53 for ubiquitylation and degradation. Inhibition of Hdm2 stabilizes p53, inhibits cell proliferation and induces apoptosis. Using HTS to discover inhibitors, we identified three new alkaloids, isolissoclinotoxin B, diplamine B, and lissoclinidine B from Lissoclinum cf. badium. Lissoclinidine B inhibited ubiquitylation and degradation of p53, and selectively killed transformed cells harboring wild-type p53, suggesting this compound could be used to develop new treatments.  相似文献   

12.
13.
14.
15.
16.
Arf, Hdm2, and p53 regulate the tumor-suppressor pathway that is most frequently disrupted in human cancer. In the absence of tumorigenic stress, Hdm2 actively attenuates p53-dependent cell cycle arrest and apoptosis by mediating ubiquitination-dependent degradation of p53. Mitogenic stress activates Arf, which indirectly activates p53 by binding to and nullifying the anti-p53 activities of Hdm2. Small conserved domains within Arf and Hdm2 mediate their direct interaction. Individually, these domains are intrinsically unstructured and, when combined in vitro, cofold into bimolecular oligomeric structures that resemble amyloid fibrils in some features. Detailed structural characterization of Hdm2/Arf complexes has previously been hampered by their heterogeneity and large size. Here, we report that a nine-residue fragment of the N-terminus of mouse Arf (termed "A1-mini") cofolds specifically with the Arf-binding domain of Hdm2 to form bimolecular oligomers. We characterized these unprecedented structures using analytical ultracentrifugation and NMR spectroscopy, providing insights into their structural organization. The A1-mini peptide not only binds specifically to Hdm2 in vitro but also recapitulates the nucleolar localization features of full-length Arf in cells. Furthermore, larger fragments of Arf that contain the A1-mini segment have previously been shown to activate p53 in mouse and human cells. Our studies provide the first insights into the molecular basis through which Arf nullifies the p53-inhibiting activity of Hdm2, indirectly activating the tumor-suppressor function of p53 in mammalian cells.  相似文献   

17.
Arf is a tumor suppressor that regulates p53 function and is a frequent target for loss in human cancers. Through two novel mechanisms, Arf inhibits the oncoprotein Hdm2, a negative regulator of p53. (1) Arf inhibits the E3 ubiquitin ligase activity of Hdm2 that leads to p53 degradation, and (2) Arf sequesters Hdm2 within nucleoli. These activities of Arf promote p53-mediated cell cycle arrest and apoptosis. Fundamental to these processes are interactions between Arf and Hdm2. Here we show that a peptide containing the 37 N-terminal amino acids of mouse Arf (mArfN37) localizes to nucleoli, sequesters Hdm2 within nucleoli, and causes cell cycle arrest. Circular dichroism and NMR spectroscopy show that mArfN37 is largely unstructured under aqueous conditions; however, the peptide adopts two alpha-helices (helix 1, residues 4-14; and helix 2, residues 20-29) in 2,2,2-trifluoroethanol (TFE). Each helix contains an amino acid motif that is repeated twice in mArfN37, once in each helix. The two helices, however, do not interact but are connected by an apparently flexible linker. The repeated motif contains Arg residues spaced by a hydrophobic segment that may be involved in Hdm2 recognition and binding. The RRPR nucleolar localization signal, contained within residues 31-34, appears to be disordered under all conditions. The identification of two Arf structural modules suggests that short peptides containing the repeated motif may function as Arf mimics and may allow the design of small molecule Arf mimics in the future.  相似文献   

18.
The p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (ISMBDs) that stabilize p53 on the protein level. The likely mechanism behind their positive effect on p53 is mediated via the competitive interaction with Mdm2. Importantly, unlike Nutlin, these compounds selectively promoted p53-mediated cell death. These novel pharmacological activators of p53 can serve as valuable molecular tools for probing p53-positive tumors and set up the stage for development of new anti-cancer drugs.  相似文献   

19.
We previously reported that the suppression of SIRT2, an NAD + -dependent protein deacetylases, induces p53 accumulation via degradation of p300 and the subsequent MDM2 degradation, eventually leading to apoptosis in HeLa cells. The present study identified a novel pathway of p53 accumulation by SIRT2 suppression in HCT116(p53+/+) cells in which SIRT2 suppression led to escape from mitotic cell death caused by spindle assembly checkpoint activation induced by microtubule inhibitors such as nocodazole but not apoptosis or G1 or G2 arrest. We found that SIRT2 interacts with P/CAF, a histone acetyltransferase, which also acts as a ubiquitin ligase against MDM2. SIRT2 suppression led to an increase of P/CAF acetylation and its stabilization followed by a decrease in MDM2 and activation of the p53-p21 pathway. Depression of mitotic cell death in HCT116(p53+/+) cells with SIRT2 suppression was released by suppression of P/CAF or p21. Thus, the P/CAF-MDM2-p53-p21 axis enables the escape from mitotic cell death and confers resistance to nocodazole in HCT116(p53+/+) cells with SIRT2 suppression. As SIRT2 has attracted attention as a potential target for cancer therapeutics for p53 regulation, the present study provides a molecular basis for the efficacy of SIRT2 for future cancer therapy based on p53 regulation. These findings also suggest an undesirable function of the SIRT2 suppression associated with activation of the p53-p21 pathway in the suppression of mitotic cell death caused by spindle assembly checkpoint activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号