首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven bovine erythrocyte antigen loci and three serum protein loci were tentatively assigned to chromosomes or synteny groups by linkage analysis to previously assigned microsatellite DNA markers. The erythrocyte antigen locus EAB was mapped to synteny group U27; EAC to chromosome 18, synteny group U9; EAL to chromosome 3, synteny group U6; EAS to chromosome 21, synteny group U4; EAZ to chromosome 10, synteny group U5; EAR' to chromosome 16, synteny group U1; and EAT' to chromosome 19, synteny group U21. The vitamin D binding protein (GC) and albumin (ALB) loci were assigned to chromosome 6, synteny group U15 and post-transferrin 2 (PTF 2) to chromosome 19, synteny group U21.  相似文献   

2.
Restriction fragment length polymorphisms (RFLPs) were described for the porcine loci for β-glucosidase (GBA) and the β-polypeptide 1 of the Na+, K+-transporting ATPase (ATP1B1). Linkage analyses using a three-generation pedigree provided evidence for the assignment of ATP1B1, GBA and two microsatellite loci (S0001 and S0067) to a previously described linkage group comprising the loci for blood group L (EAL) and an anonymous microsatellite (S0097). The linear order of the six markers was determined with confidence by multipoint analyses and the length of the linkage group was estimated at 88 CM. This linkage group was assigned to pig chromosome 4 on the basis of a previous physical localization of the ATP1B1 gene. In situ hybridization data for S0001 presented in this study were consistent with a localization on chromosome 4 and suggested a regional localization to 4pl2-pl3. The present study reveals conflicting data concerning the genetic localization of the K88 loci controlling the expression of the receptors for the E. coli pilus antigens. One group has reported data suggesting a loose linkage between K88 and EAL, now mapped to chromosome 4, whereas two other groups have found linkage between K88 and the transferrin locus (TF), mapped to chromosome 13 by in situ hybridization.  相似文献   

3.
One hundred and fifty-four microsatellite markers were selected for genomic scanning of the porcine genome and were grouped into amplification sets to reduce the cost and labour required. Thirty amplification sets had two markers (duplex), 20 sets had three markers (triplex) and five sets had four markers (quadruplex) while 14 markers were analysed separately. The selection criteria for microsatellites were: ease of scoring, level of polymorphism, genetic location and ability to be genotyped in a multiplexed polymerase chain reaction (PCR). The selected microsatellites were chosen to span the entire genome flanked by the porcine linkage map with intervals between adjacent markers of 15–20 cM where possible. The utility of this set of markers was demonstrated by linkage analyses with loci controlling blood plasma protein and red cell enzyme polymorphisms ( n = 13), erythrocyte antigens ( n = 15), the S blood group, coat colour and ryanodine receptor from 174 backcross Meishan-White Composite pigs. These loci displayed various forms of inheritance and most (24 loci) have been placed in linkage groups. Significant two-point linkages (lod > 3·0) were detected for each polymorphic marker. These results provide the first linkage assignments for phosphoglucomutase (PGM2) and erythrocyte antigen F (EAF) to SSC8; and serum amylase (AMY) and erythrocyte antigen I (EAI) to SSC18. All of the remaining polymorphic loci ( n = 24) mapped to previously identified regions confirming earlier results. Most of the markers used in this study should be useful in resource populations of various breed crosses as the number of alleles detected in a multibreed reference population was one of the selection criteria.  相似文献   

4.
70个水稻微卫星标记染色体位置的更正   总被引:1,自引:0,他引:1  
微卫星标记(SSR)因其操作简单和稳定可靠的特点而成为一种重要的分子标记,被广泛应用于遗传作图和种质鉴定等方面。但其在染色体上位置的正确性将直接影响到基因定位的正确性和后续研究的方向。利用美国国家生物信息技术中心(NCBI)网站的Blast程序,将2740个SSR标记的前后引物序列与水稻粳稻品种日本晴基因组进行比对,共发现70个标记位于另一条染色体,对这70个标记重新锚定的染色体进行了更正。这将有助于今后水稻分子标记遗传连锁图的正确构建。  相似文献   

5.
Chen C  Yu Q  Hou S  Li Y  Eustice M  Skelton RL  Veatch O  Herdes RE  Diebold L  Saw J  Feng Y  Qian W  Bynum L  Wang L  Moore PH  Paull RE  Alam M  Ming R 《Genetics》2007,177(4):2481-2491
A high-density genetic map of papaya (Carica papaya L.) was constructed using microsatellite markers derived from BAC end sequences and whole-genome shot gun sequences. Fifty-four F(2) plants derived from varieties AU9 and SunUp were used for linkage mapping. A total of 707 markers, including 706 microsatellite loci and the morphological marker fruit flesh color, were mapped into nine major and three minor linkage groups. The resulting map spanned 1069.9 cM with an average distance of 1.5 cM between adjacent markers. This sequence-based microsatellite map resolved the very large linkage group 2 (LG 2) of the previous high-density map using amplified fragment length polymorphism markers. The nine major LGs of our map represent papaya's haploid nine chromosomes with LG 1 of the sex chromosome being the largest. This map validates the suppression of recombination at the male-specific region of the Y chromosome (MSY) mapped on LG 1 and at potential centromeric regions of other LGs. Segregation distortion was detected in a large region on LG 1 surrounding the MSY region due to the abortion of the YY genotype and in a region of LG6 due to an unknown cause. This high-density sequence-tagged genetic map is being used to integrate genetic and physical maps and to assign genome sequence scaffolds to papaya chromosomes. It provides a framework for comparative structural and evolutional genomic research in the order Brassicales.  相似文献   

6.
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.  相似文献   

7.
Microdissection of metaphase chromosome preparations of diploid oat Avena strigosa (2n = 14) allowed isolation of the three individual chromosomes with distinct morphologies, numbers 2, 3 and 7. Using a PCR approach based on the DNA of microdissected chromosomes, STS derivatives of RFLP markers, genetically mapped in Avena spp. linkage maps, have been physically assigned to these three chromosomes. Based on either two or four RFLP-derived STS markers, the A. strigosa chromosomes 2 and 3 were found to be homoeologous to the oat linkage groups C and E, respectively. With the DNA of chromosome 7, four RFLP-derived STS markers located within the central part of linkage group F and two distal ends of linkage group G were amplified. Accordingly, chromosome 7 corresponds to linkage group F and, most probably, is involved in an A. strigosa-specific chromosomal translocation relative to the diploid species Avena atlantica and Avena hirtula, of which the cross progeny was used for linkage mapping of the tested RFLP clones.  相似文献   

8.
A comprehensive linkage map, including 236 linked markers with a total sex-average map length of about 2300 cM, covering nearly all parts of the pig genome has been established. Linkage groups were assigned to all 18 autosomes, the X chromosome and the X/Y pseudoautosomal region. Several new gene assignments were made including the assignment of linkage group U1 (EAK-HPX) to chromosome 9. The linkage map includes 77 type I loci informative for comparative mapping and 72 in situ mapped markers physically anchoring the linkage groups on chromosomes. A highly significant heterogeneity in recombination rates between sexes was observed with a general tendency towards an excess of female recombination. The average ratio of female to male recombination was estimated at 1–4:1 but this parameter varied between chromosomes as well as between regions within chromosomes. An intriguing finding was that blood group loci were overrepresented at the distal ends of linkage groups.  相似文献   

9.
Recently, rabbit microsatellite markers were developed from a chromosome 1-specific library, and seven new markers were incorporated into the genetic map of the rabbit. We have now developed microsatellite markers from chromosomes 3-, 5-, 6-, 7-, 12-, and 19-specific libraries. Linkage analysis was performed with use of these new markers, five recently physically mapped markers (PMP2, TCRB, ALOX15, MT1, and Sol33), microsatellite markers located in the HBA gene cluster, the MHC region and FABP6 gene, and seven biochemical markers (Es-1, Es-3, Est-2, Est-4, Est-6, Est-X, and HP). This analysis enabled us to verify the specificity of the libraries and to determine the position and orientation of the linkage groups on the chromosomes.  相似文献   

10.
In order to align two previously published genetic linkage maps, a set of four of the United States Department of Agriculture (USDA) microsatellite linkage markers was mapped in the International Pig Gene Mapping Project (PiGMaP) reference families. Two-point linkage analysis was used between these USDA markers and the set of genes and markers previously mapped on the PiGMaP chromosome 14 map-Markers with threshold lod scores of three or greater were used for multipoint map construction. The USDA and PigGMaP linkage maps of chromosome 14 were aligned using the four USDA microsatellite markers along with three markers that are common to both maps. The PiGMaP genetic linkage map order for chromosome 14 was confirmed and the map was expanded to 193 cM with addition of the new markers.  相似文献   

11.
Functional genes mapped on the chicken genome   总被引:8,自引:0,他引:8  
Microsatellite polymorphisms are finding increasing use in genetics. In addition to the random isolation of microsatellite markers, such markers can also be developed from sequences already present in public domain databases. An advantage of public domain databases is that these microsatellites are known to be located within or close to identified functional genes. In this study the GenBank and EMBL databases were screened for microsatellite markers and primers were defined for amplification. Subsequently, these markers were tested on a panel of five different birds from layer and broiler stocks and on the international reference families: the East Lansing reference family and the Compton reference family. Of the 33 loci tested, 25 were polymorphic on the test panel and from these 25, 14 were polymorphic in one or both reference families. Twelve of the 14 loci that could be mapped fell into previously defined linkage groups. The other two markers were not linked. Because three of the loci had previously been mapped to specific chromosomes by in situ hybridization, linkage groups E6 and C3 could be assigned to chromosome 6, E5 and C17 to chromosome 4 and E21 to one of the microchromosomes.  相似文献   

12.
The gene Pi15 for resistance of rice to Magnaporthe grisea was previously identified as being linked to the gene Pii. However, there is a debate on the chromosomal position of the Pii gene, because it was originally mapped on chromosome 6, but recent work showed it might be located on chromosome 9. To determine the chromosomal location of the Pi15 gene, a linkage analysis using molecular markers was performed in a F2 mapping population consisting of 15 resistant and 141 susceptible plants through bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). Out of 20 microsatellite markers mapped on chromosomes 6 and 9 tested, only one marker, RM316 on chromosome 9, was found to have a linkage with the Pi15 gene with a recombination frequency of (19.1 ± 3.7)%. To confirm this finding, four sequence-tagged site (STS) markers mapped on chromosome 9 were tested. The results suggested that marker G103 was linked to the Pi15 gene with a recombination frequency of (5.7 ± 2.1)%. To find marker(s) more closely linked to the Pi15 gene, random amplified polymorphic DNA (RAPD) analysis was performed. Out of 1 000 primers tested, three RAPD markers, BAPi15486, BAPi15782 and BAPi15844 were found to tightly flank the Pi15 gene with recombination frequencies of 0.35%, 0.35% and 1.1%, respectively. These three RAPD markers should be viewed as the starting points for marker-aided gene pyramiding and cloning. A new gene cluster of rice blast resistance on chromosome 9 was also discussed.  相似文献   

13.
We present a genetic map based on microsatellite polymorphisms for the African human malaria vector, Anopheles gambiae. Polymorphisms in laboratory strains were detected for 89% of the tested microsatellite markers. Genotyping was performed for individual mosquitoes from 13 backcross families that included 679 progeny. Three linkage groups were identified, corresponding to the three chromosomes. We added 22 new markers to the existing X chromosome map, for a total of 46 microsatellite markers spanning a distance of 48.9 cM. The second chromosome has 57 and the third 28 microsatellite markers spanning a distance of 72.4 and 93.7 cM, respectively. The overall average distance between markers is 1.6 cM (or 1.1, 1.2, and 3.2 cM for the X, second, and third chromosomes, respectively). In addition to the 131 microsatellite markers, the current map also includes a biochemical selectable marker, Dieldrin resistance (Dl), on the second chromosome and five visible markers, pink-eye (p) and white (w) on the X, collarless (c) and lunate (lu) on the second, and red-eye (r) on the third. The cytogenetic locations on the nurse cell polytene chromosomes have been determined for 47 markers, making this map an integrated tool for cytogenetic, genetic, and molecular analysis.  相似文献   

14.
Males are the heterogametic sex in salmonid fishes. In brown trout (Salmo trutta) the sex-determining locus, SEX, has been mapped to the end of linkage group BT-28, which corresponds to linkage group AS-8 and chromosome SSA15 in Atlantic salmon (Salmo salar). We set out to identify the sex chromosomes in brown trout. We isolated Atlantic salmon BAC clones containing microsatellite markers that are on BT-28 and also on AS-8, and used these BACs as probes for fluorescent in situ hybridization (FISH) analysis. SEX is located on the short arm of a small subtelocentric/acrocentric chromosome in brown trout, which is consistent with linkage analysis. The acrocentric chromosome SSA15 in Atlantic salmon appears to have arisen by a centric fusion of 2 small acrocentric chromosomes in the common ancestor of Salmo sp. We speculate that the fusion process that produced Atlantic salmon chromosome SSA15 disrupted the ancestral sex-determining locus in the Atlantic salmon lineage, providing the impetus either for the relocation of SEX or selection pressure for a novel sex-determining gene to arise in this species. Thus, the sex-determining genes may differ in Atlantic salmon and brown trout.  相似文献   

15.
We have integrated data from linkage mapping, physical mapping and karyotyping to gain a better understanding of the sex-determining locus, SEX, in Atlantic salmon (Salmo salar). SEX has been mapped to Atlantic salmon linkage group 1 (ASL1) and is associated with several microsatellite markers. We have used probes designed from the flanking regions of these sex-linked microsatellite markers to screen a bacterial artificial chromosome (BAC) library, representing an 11.7x coverage of the Atlantic salmon genome, which has been HindIII fingerprinted and assembled into contigs. BACs containing sex-linked microsatellites and their related contigs have been identified and representative BACs have been placed on the Atlantic salmon chromosomes by fluorescent in situ hybridization (FISH). This identified chromosome 2, a large metacentric, as the sex chromosome. By positioning several BACs on this chromosome by FISH, it was possible to orient ASL1 with respect to chromosome 2. The region containing SEX appears to lie on the long arm between marker Ssa202DU and a region of heterochromatin identified by DAPI staining. BAC end-sequencing of clones within sex-linked contigs revealed five hitherto unmapped genes along the sex chromosome. We are using an in silico approach coupled with physical probing of the BAC library to extend the BAC contigs to provide a physical map of ASL1, with a view to sequencing chromosome 2 and, in the process, identifying the sex-determining gene.  相似文献   

16.
We mapped 633 markers (488 AFLPs, 28 RAPDs, 34 IRSs, 75 ESTs, 4 STSs, and 4 phenotypic markers) for the Medaka Oryzias latipes, a teleost fish of the order Beloniformes. Linkage was determined using a reference typing DNA panel from 39 cell lines derived from backcross progeny. This panel provided unlimited DNA for the accumulation of mapping data. The total map length of Medaka was 1354.5 cM and 24 linkage groups were detected, corresponding to the haploid chromosome number of the organism. Thirteen to 49 markers for each linkage group were obtained. Conserved synteny between Medaka and zebrafish was observed for 2 independent linkage groups. Unlike zebrafish, however, the Medaka linkage map showed obvious restriction of recombination on the linkage group containing the male-determining region (Y) locus compared to the autosomal chromosomes.  相似文献   

17.
Morishima K  Nakayama I  Arai K 《Genetica》2008,132(3):227-241
In the present study, the first genetic linkage map of the loach Misgurnus anguillicaudatus was constructed with 164 microsatellite markers and a color locus, and it included 155 newly developed markers. A total of 159 microsatellite markers and a color locus were mapped in 27 linkage groups (LGs). The female map covered 784.5 cM with 153 microsatellite markers and a color locus, whereas the male map covered 662.2 cM with 119 microsatellite markers. The centromeric position in each LG was estimated by marker-centromere mapping based on half-tetrad analysis. In 4 LGs (LG2, LG3, LG4, and LG5), the centromere was estimated at the intermediate region. In LG1, LG11, and LG12, the centromere was estimated to shift from the sub-intermediate region to the end (telomeric). The number of these LGs (7) was identical to the collective number of bi-arm metacentric (5) and sub-metacentric chromosome (2) of the haploid chromosome set (n = 5) of the loach. In the other LGs, the position of the centromere was estimated at the end or outside. These results indicate satisfactory compliance between the linkage map and the chromosome set. Our map would cover approximately almost the entire loach genome because most markers were successfully mapped.  相似文献   

18.
Summary Genetic maps of chromosomes 2 and 4 constructed from pair-wise lod score data from family studies and regional assignments for markers are presented. Two loci are mapped on chromosome 2 and multiple crossing-over is suggested as an explanation for the poor fit to the data in females. The best map of chromosome 4 gives the genetic locations of five markers with the Stoltzfus (SF) blood group distal to MNS on the long arm and GC close to the centromere on the short arm. This position for GC is outside its provisional regional assignment and possible reasons for this discrepancy are discussed. The GM-PI linkage group has a score of less than-1.0 with chromosome 4 suggesting that it may be excluded from that chromosome.The regional assignment for markers on chromosome 2–5 are also shown.  相似文献   

19.
Previous research has mapped an ovulation rate quantitative trait locus (QTL) to bovine chromosome 19. In an effort to enhance comparative mapping information and develop additional markers for refined QTL mapping, microsatellite markers were developed in a targeted approach. A bovine bacterial artificial chromosome (BAC) library was screened for loci with either known or predicted locations on bovine chromosome 19. An average of 6.4 positive BAC were identified per screened locus. A total of 10 microsatellite markers were developed for five targeted loci with heterozygosity of 7-83% in a sample of reference family parents. The newly developed markers were typed on reference families along with four previously mapped marker loci and used to create a linkage map. Comparison of locus order between human and cattle provides support for previously observed rearrangement. One of the mapped loci myotubularin related protein 4 (MTMR4) potentially extends the proximal boundary of a conserved linkage group.  相似文献   

20.
A genetic linkage map of tetraploid wheat was constructed based on a cross between durum wheat [Triticum turgidum ssp. durum (Desf.) MacKey] cultivar Langdon and wild emmer wheat [T. turgidum ssp. dicoccoides (K?rn.) Thell.] accession G18-16. One hundred and fifty-two single-seed descent derived F(6) recombinant inbred lines (RILs) were analyzed with a total of 690 loci, including 197 microsatellite and 493 DArT markers. Linkage analysis defined 14 linkage groups. Most markers were mapped to the B-genome (60%), with an average of 57 markers per chromosome and the remaining 40% mapped to the A-genome, with an average of 39 markers per chromosome. To construct a stabilized (skeleton) map, markers interfering with map stability were removed. The skeleton map consisted of 307 markers with a total length of 2,317 cM and average distance of 7.5 cM between adjacent markers. The length of individual chromosomes ranged between 112 cM for chromosome 4B to 217 cM for chromosome 3B. A fraction (30.1%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1A, 1BL, 2BS, 3B, and 4B. DArT markers showed high proportion of clustering, which may be indicative of gene-rich regions. Three hundred and fifty-two new DArT markers were mapped for the first time on the current map. This map provides a useful groundwork for further genetic analyses of important quantitative traits, positional cloning, and marker-assisted selection, as well as for genome comparative genomics and genome organization studies in wheat and other cereals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号