首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 防雨池栽条件下研究了花后干旱和渍水胁迫对两个不同品质类型小麦(Triticum aestivum)品种籽粒产量和品质形成的影响。结果表明,花后渍水和干旱处理明显降低了小麦籽粒产量和蛋白质产量。在整个灌浆期内干旱处理明显提高了籽粒蛋白质和醇溶蛋白含量,而渍水处理降低了籽粒蛋白质及其组分的积累量。籽粒总淀粉和直链淀粉含量以渍水处理最高,而支链淀粉以对照最高。干旱处理提高了籽粒干、湿面筋含量、沉降值和降落值,而渍水处理降低了上述品质指标。试验表明干旱和渍水胁迫对小麦籽粒蛋白质与淀粉的含量和组分及面粉品质等均有不同程度的影响,从而改变了不同品质类型小麦的籽粒品质。  相似文献   

2.
除草剂对冬小麦光合特性、籽粒产量及品质的调控效应   总被引:10,自引:0,他引:10  
通过田间试验研究了4种除草剂(2,4-D丁酯、‘巨星’、‘世玛’和‘骠马’)对2个小麦品种(‘临优145’和‘临汾138’)光合特性、籽粒产量和品质的影响。结果表明:2,4-D丁酯使小麦灌浆期间旗叶的叶绿素相对含量(SPAD值)和净光合速率(Pn)一直较低,千粒重和籽粒产量显著低于对照;‘巨星’使灌浆前期的SPAD值和Pn较高而中后期快速下降,灌浆持续时间缩短,产量与对照相近;‘世玛’使灌浆前中期SPAD值和Pn较低但后期下降缓慢,灌浆持续时间延长,千粒重和籽粒产量显著高于对照和其它处理;‘骠马’对光合特性和产量影响较小。2,4-D丁酯和‘骠马’使籽粒的蛋白质含量、湿面筋含量、沉降值、吸水率、评价值显著或极显著提高,稳定时间延长,而形成时间与对照相近;‘巨星’和‘世玛’处理的品质指标大多低于或接近对照。研究发现,除草剂通过调控小麦旗叶光合特性和灌浆进程来影响其千粒重和籽粒产量,且除草剂和品种间存在差异;2,4-D丁酯虽能明显改善小麦品质但却显著降低籽粒产量,‘骠马’使小麦品质特性改善的同时也使籽粒产量有所提高,‘世玛’虽能显著提高籽粒产量却使品质特性变差。  相似文献   

3.
灌浆结实期温度对水稻产量和品质形成的影响   总被引:14,自引:0,他引:14  
灌浆结实期是水稻产量和品质形成的关键时期,该时期温度对水稻籽粒灌浆具有显著的影响.随着全球气候趋暖以及极端天气频发,温度胁迫下籽粒灌浆和稻米品质的响应特征及其生理生化机制是目前稻作研究的热点之一.本文以灌浆结实期温度为切入点,对水稻产量和品质形成的适宜温度与温度影响时段以及温度胁迫下水稻生理生化特征等方面进行了梳理.灌浆初期(齐穗后20 d)是温度影响水稻产量和品质形成的关键时期,适温(21 ~ 26℃)有利于水稻灌浆和淀粉的充实与沉积,过高或过低温度均不利于提高水稻产量和品质.温度胁迫下,水稻生理生化活性下降,光合功能降低,抗逆性减弱,干物质积累和运转受抑,从而造成产量下降及品质变劣.这些可能为水稻优质高产栽培和灌浆结实期温度研究提供一定的参考.  相似文献   

4.
不同生长调节物质对水稻生长及镉积累的影响   总被引:3,自引:0,他引:3  
比较脱落酸(ABA)、乙烯利(ETH)、水杨酸(SA)和茉莉酸甲酯(MeJ A)4种植物生长调节物质(PGR)对水稻生长及籽粒镉(Cd)积累的影响差异。试验采用重金属污染土种植水稻,于分蘖期、灌浆期各进行1次PGR叶面喷施处理,分析灌浆期叶片光合指标,丙二醛(MDA)含量以及收获期各部位生物量和Cd含量。结果表明:(1)低浓度ABA(5mg/L)可维持水稻正常产量;高浓度ABA(15mg/L)则导致产量下降。ETH对水稻地上部生长和单株产量有显著抑制作用,SA和MeJ A(0.56mg/L)均可保证地上部正常生长,维持正常产量。(2)外施4种PGR均抑制灌浆期叶片气孔开放,降低蒸腾速率和光合速率,抑制效果最明显的是高浓度MeJ A(0.56mg/L)。(3)在供试浓度范围内SA、低浓度ABA(5mg/L)以及高浓度MeJ A均可降低灌浆期叶片MDA含量,减少质膜过氧化水平。(4)4种PGR均可降低水稻籽粒Cd含量,其中低浓度ABA(5mg/L)抑制籽粒Cd积累的效应最佳。相关性分析结果表明,PGR抑制籽粒积累Cd的效应与地上部向籽粒转运Cd的调控机制有关,与蒸腾速率无显著相关关系。(5)综上所述,低浓度ABA(5mg/L)处理对水稻产量无影响,且籽粒Cd含量降低程度最大。适当浓度的PGR可降低水稻籽粒Cd含量,在中低度重金属污染农田生态修复实践中具有一定的应用前景,但必须精确控制PGR的处理时间和处理浓度,避免出现抑制生长和降低产量的负效应。  相似文献   

5.
miR396-GRF模块: 水稻分子育种的新资源   总被引:1,自引:0,他引:1  
刘玲童  王台 《植物学报》2016,51(2):148-151
籽粒大小与颖花数量是影响水稻(Oryza sativa)产量的重要因素。miR396-GRF模块在拟南芥(Arabidopsis thaliana)和水稻等植物的营养器官和花器官生长发育过程中扮演着多面角色。最近, 中国科学家在miR396-GRF模块调控水稻籽粒大小和穗粒数的分子机理研究方面取得了突破性进展。  相似文献   

6.
籽粒大小与株型对水稻产量具有重要影响,因此其相关基因克隆与功能研究对培育高产水稻具有重大的意义。本研究从以短舌野生稻为供体、华粳籼74 (HJX74)为受体的染色体单片段代换系(SSSLs)中鉴定到一个新的调控籽粒大小与株型的QTL位点qGL3.4。与对照HJX74相比,近等基因系NIL-qGL3.4的粒长、粒宽、千粒重、穗长、穗粒数、一次枝梗数、单株产量与株高显著增加,而NIL-qGL3.4的分蘖数和二级枝梗数与HJX74对应值无显著差异。通过图位克隆,将qGL3.4定位在第3号染色体239.18 kb区间内。细胞学分析表明,NIL-qGL3.4通过调节颖壳细胞的生长进而调控籽粒的大小。分子机理研究表明,qGL3.4可能通过调控籽粒大小相关基因EXPANSINs、GS3、GL3.1、PGL1、GL7、OsSPL13和GS5的表达进而调控籽粒大小。本研究可能为高产与理想株型的水稻培育提供新的靶标位点。  相似文献   

7.
氮肥基追比与灌浆中期高温胁迫对小麦产量和品质的影响   总被引:2,自引:0,他引:2  
以优质强筋小麦品种‘济麦20’为供试材料,研究了不同氮肥基追比(基肥:追肥为1:1、1:2、1:5)和灌浆中期高温胁迫对小麦籽粒产量和品质的影响.结果显示,灌浆中期高温胁迫处理能显著降低小麦千粒重、籽粒产量以及籽粒的淀粉含量、支链淀粉含量、支链淀粉/直链淀粉比例,峰值粘度、稀懈值、最终粘度也相应降低,而籽粒蛋白质含量相应提高,导致淀粉品质变劣而面团的流变学特性得以改善;在基追比例1:1的基础上增大拔节期氮素追施比例,能显著提高小麦常温和高温胁迫下籽粒产量,缓解高温胁迫对小麦千粒重和籽粒产量的不良影响,而对小麦籽粒面团流变学特性及面粉的粘度指标影响甚微.研究表明,适当提高拔节期氮肥追施比例可有效减缓灌浆中期高温胁迫对小麦产量的负面影响,但对小麦籽粒品质影响较小.  相似文献   

8.
土壤水分逆境是限制小麦籽粒品质形成的重要生态因子,明确土壤水分逆境下小麦籽粒品质形成的生理机制及调优技术途径,对于深化小麦品质生理生态研究和指导小麦调优栽培具有重要的理论意义和应用前景。在防雨池栽条件下,设置渍水、干旱和对照3个水分处理,每个水分处理下再设置120和240 kg.hm-2两个施氮水平,研究了花后渍水和干旱逆境下氮素对两个籽粒蛋白质含量不同的小麦品种植株氮代谢和籽粒蛋白质积累的影响。结果表明,与正常水分处理相比,花后干旱和渍水均降低旗叶硝酸还原酶活性、叶片总氮含量和游离氨基酸含量。干旱处理提高了茎鞘总氮与游离氨基酸含量以及籽粒蛋白质含量,而渍水处理则使其降低。水分逆境下增施氮肥提高旗叶硝酸还原酶活性、叶片与茎鞘总氮和游离氨基酸含量以及籽粒游离氨基酸和蛋白质含量。花后干旱和渍水均显著降低了小麦籽粒产量和蛋白质产量。增施氮肥提高适宜水分和水分亏缺条件下小麦籽粒产量,但不利于渍水下小麦产量的提高。这说明,花后渍水和干旱逆境下施用氮肥对小麦植株氮代谢和籽粒蛋白质积累有明显的调节效应。  相似文献   

9.
 池栽试验条件下,设置渍水、干旱和对照3个水分处理,每个水分处理下设置两个施氮水平 ,研究了花后渍水或干旱逆境下氮素营养对两个不同类型小麦(Triticum aestivum) 品种籽粒产量和品质性状的影响。结果表明,与对照相比,花后渍水或干旱处理显著降低了小麦的千粒重、穗粒数和籽粒产量。在适宜水分和干旱条件下,增施氮肥增加了小麦籽粒产量,而在渍水条件下,增施氮肥降低了产量。干旱处理提高了蛋白质含量,干、湿面 筋含量,沉降值和降落值;而渍水处理则降低了小麦籽粒蛋白质含量和干、湿面筋含量。同 一水分处理下,增施氮肥提高了蛋白质含量,谷蛋白/醇溶蛋白比,支链淀粉含量和支/直链淀粉比。在小麦籽粒主要品质性状上存在显著的水氮互作效应,且水分、氮肥及水氮互作效 应对小麦籽粒产量和品质的影响因品种的不同而异。  相似文献   

10.
水稻是最重要的粮食作物之一,提高水稻产量一直是育种的主要目标。水稻四倍体相对于二倍体具有籽粒变大、粒重增加的特点,研究基因组加倍后籽粒大小基因的调控模式,在育种应用方面具有十分重要的意义。本文以二倍体 -四倍体水稻为材料,分析6个控制籽粒大小基因在幼穗发育中的表达差异,同时结合转基因实验,探讨基因剂量增加对基因表达水平和籽粒大小的影响。结果发现:基因组加倍后,水稻的发育进程不变,但株高增加,叶片变宽,籽粒变大,增大后的籽粒在籼稻表现为长、宽均增加显著,而在粳稻中长度比宽度增加更为明显。进一步分析控制籽粒大小基因的表达差异情况,发现这些基因的表达不仅受发育时期的影响,在籼粳亚种间也明显不同,即受遗传背景的影响。在基因组加倍的情况下,正调控基因GS5、HGW的表达普遍高于对应的二倍体;负调控基因GS3在籼稻D9311中趋于下调或沉默,而在粳稻DBl中趋于上调,GW2在D9311中上调,而在DBl中趋于沉默。通过转基因实验分析负调控基因GW2在二倍体Bl中的表达趋势,发现其在基因剂量线性增加的情况下,表达水平高于二倍体和四倍体,导致其籽粒变小。本研究结果有助于了解水稻中控制籽粒大小的基因在二倍体和四倍体中的表达模式,为高产育种提供理论依据。  相似文献   

11.
The effect of external applications of gibberellins (GA3) and abscisic acid (ABA) on the growth, carbohydrate content, and net photosynthesis of heavy metal-stressed rice plants (Oryza sativa cv. Bahía) was investigated. Treatment with cadmium (0.1 mm) and nickel (0.5 mm) inhibited rice growth and stimulated carbohydrate accumulation, especially in seeds from which seedlings were developing, stems, and first leaves. The addition of GA3 (14 m) to the rice culture solution together with Cd or Ni partially reversed the effects of heavy metals, stimulating growth as well as mobilization of carbohydrate reserves in seeds from which seedlings had developed. GA3 increased the sugar content in roots and second and third leaves and also modified the carbohydrate distribution pattern compared with heavy metal-treated plants. In contrast to GA3, ABA (19 m) supplied to rice cultures potentiated the effect of heavy metals, inhibiting the growth of young leaves and the translocation of storage products from source to sink organs. In addition, sugars were accumulated in roots and second leaf but not in the third leaf, the extension in length of which was also inhibited by the treatment. Net photosynthesis rates recovered transitorily in Cd-treated plants after the addition of hormones. The possible relationship between growth and carbohydrate distribution, as well as the involvement of hormones, in the response of plant to heavy metal stress is discussed.Abbreviations 5DT 5 days after treatment - 10DT 10 days after treatment - ABA abscisic acid - GA3 gibberellic acid - TMC total metabolizable carbohydrates  相似文献   

12.
蛋白质是生命活动的主要承担分子,了解蛋白质在有机体中的时空分布对于正确解析蛋白质的功能十分重要.磷脂氢谷胱甘肽过氧化物酶 (PHGPx) 是目前发现的唯一能够直接还原膜上脂类过氧化物的抗氧化酶,在保护生物膜免受过氧化损伤方面有着重要作用.采用Western blot技术,分析了水稻PHGPx (OsPHGPx) 在水稻不同组织以及多种胁迫条件下的蛋白质表达特征.结果表明,OsPHGPx在成熟水稻植株内主要分布于叶组织中,以旗叶中含量最高,而在水稻幼苗中则在茎及叶组织中均检测到较强的杂交信号.OsPHGPx在幼苗中的表达受到H2O2和NaCl的强烈诱导,但植物激素对其表达的影响较弱.H2O2和NaCl的诱导效果呈现出时间及剂量的相关性,当用0.5 mmol/L H2O2处理12 h或用500 mmol/L NaCl处理24 h,此时OsPHGPx表达量达到最大值.对H2O2清除剂二甲基硫脲处理的水稻幼苗,外源H2O2的再处理并不能诱导OsPHGPx的表达,而NaCl的诱导效果并不受影响,说明H2O2可能并不介导NaCl诱导OsPHGPx的表达.这些结果为进一步研究OsPHGPx在水稻中生物学功能奠定了基础.  相似文献   

13.
Calcium-dependent protein kinases (CDPKs) play an important role in rice signal transduction, but the precise role of each individual CDPK is still largely unknown. Recently, a full-length cDNA encoding OsCDPK13 from rice seedling was isolated. To characterize the function of OsCDPK13, its responses to various stresses and hormones were analyzed in this study. OsCDPK13 accumulated in 2-week-old leaf sheath and callus, and became phosphorylated in response to cold and gibberellin (GA). OsCDPK13 gene expression and protein accumulation were up-regulated in response to GA3 treatment, but suppressed in response to abscisic acid and brassinolide. Antisense OsCDPK13 transgenic rice lines were shorter than the vector control lines, and the expression of OsCDPK13 was lower in dwarf mutants of rice than in wild type. Furthermore, OsCDPK13 gene expression and protein accumulation were enhanced in response to cold, but suppressed under salt and drought stresses. Sense OsCDPK13 transgenic rice lines had higher recovery rates after cold stress than vector control rice. The expression of OsCDPK13 was stronger in cold-tolerant rice varieties than in cold-sensitive ones. The results suggest that OsCDPK13 might be an important signaling component in the response of rice to GA and cold stress.  相似文献   

14.
Gibberellins (GAs) are a group of diterpenoid plant hormones that control plant growth and development at various stages. Biologically active GAs share the common structures of a 3β-hydroxy group, a carboxy group at C-6, and a γ-lactone between C-4 and C-10. Hydroxylation at C-2β is a major deactivation step in many plant species, and hydroxylation at C-13 has been shown to weaken the binding affinity of GAs to their receptor proteins. In rice, bioactive GA4 has also been shown to be deactivated through 16α,17-epoxidation. Moreover, 16,17-dihydro-16α,17-dihydroxy GA4 has been identified as an aglycon of its glucoside from rice. However, our knowledge on the biological activity of 16,17-epoxidized GAs is currently limited to 16,17-dihydro-16α,17-epoxy GA4. Moreover, the bioactivity of 16,17-dihydro-16α,17-dihydroxy GA4 remains unknown. Here, we synthesized 16,17-epoxidized or dihydroxylated GA derivatives and performed a structure–activity relationship study using rice seedlings. 16,17-Epoxidation of bioactive GA1 and GA4 reduced their activity to promote elongation of rice leaf sheaths. Moreover, 16,17-dihydroxylation significantly decreased the activities of 16,17-dihydro-16α,17-epoxy GAs. These results suggest that GAs are deactivated in a stepwise manner via 16,17-epoxidation and hydrolysis of these epoxy groups.  相似文献   

15.
Submergence induces rapid elongation of rice coleoptiles (Oryza sativa L.) and of deepwater rice internodes. This adaptive feature helps rice to grow out of the water and to survive flooding. Earlier, we found that the growth response of submerged deepwater rice plants is mediated by ethylene and gibberellin (GA). Ethylene promotes growth, at least in part, by increasing the responsiveness of the internodal tissue to GA. In the present work, we examined the possibility that increased responsiveness to GA was based on a reduction in endogenous abscisic acid (ABA) levels. Submergence and treatment with ethylene led, within 3 hours, to a 75% reduction in the level of ABA in the intercalary meristem and the growing zone of deepwater rice internodes. The level of GA1 increased fourfold during the same time period. An interaction between GA and ABA could also be shown by application of the hormones. ABA inhibited growth of submerged internodes, and GA counteracted this inhibition. Our results indicate that the growth rate of deepwater rice internodes is determined by the ratio of an endogenous growth promoter (GA) and a growth inhibitor (ABA). We also investigated whether ABA is involved in regulating the growth of rice coleoptiles. Rice seedlings were grown on solutions containing fluridone, an inhibitor of carotenoid and, indirectly, of ABA biosynthesis. Treatment with fluridone reduced the level of ABA in coleoptiles and first leaves by more than 75% and promoted coleoptile growth by more than 60%. Little or no enhancement of growth by fluridone was observed in barley, oat, or wheat. The involvement of ABA in determining the growth rate of rice coleoptiles and deepwater rice internodes may be related to the semiaquatic growth habit of this plant.  相似文献   

16.
The effects of elevated CO2 (750 vs. 375μl/l) on population abundances and metabolism enzyme of AChE and protective enzymes of SOD, POD and CAT in brown planthoppers (BPH) Nilaparvata lugens, and on size and abundances of yeast‐like endosymbiotes (YLES) were studied as BPH fed Bacillus thuringiensis (Bt) rice expressing pure Cry1Ab after successively two generations in open‐top chambers. The results indicated that: (1) Brachypterous and macropterous subpopulations and total population increased with elevated CO2. Significant increases were found as BPH fed non‐transgenic rice while only significant increase as macropterous‐BPH fed Bt rice. (2) The responses of brachypterous and macropterous‐BPH to Bt rice were different. Brachypterous‐subpopulation significantly decreased (13.6%) while macropterous ones significantly increased (43.8%) as fed Bt rice relative to non‐transgenic rice at elevated CO2. (3) Elevated CO2 only significantly inhibited AChE activity as brachypterous‐BPH fed non‐transgenic rice. Significant increases in POD and SOD, and significant decrease in CAT were found as brachypterous‐BPH fed Bt rice, while significant increases in CAT and significant decrease in POD were also observed as fed non‐transgenic rice in elevated CO2 relative to ambient CO2. (4) Bt rice significantly inhibited POD and SOD activity at ambient CO2, while only significantly enhanced SOD activity at elevated CO2. (5) Elevated CO2 significantly decreased YLES per mg/head of brachypterous‐BPH females while only significantly decreased YLES per mg/head as brachypterous‐BPH males fed Bt rice. And there were significant differences in YLES width or length between females and males. Elevated CO2 can markedly affect the symbiosis relationship between YLES and BPH through the bottom‐up forcing on BPH physiological metabolism. And the damage inflicted by BPH on rice, irrespective of the presence of insecticidal genes, is predicted to be higher at elevated CO2. Furthermore, transgenic Bt rice can also exacerbate emigrating‐macropterous‐BPH occurring especially at elevated CO2.  相似文献   

17.
The effect of AlCl3 on the antioxidant system of rice roots and the role of applied antioxidants ascorbic acid (AsA) and glutathione (GSH) in AlCl3-inhibited growth of rice roots were investigated. AlCl3 treatment resulted in a rapid inhibition of root growth but had no effect on lipid peroxidation and antioxidative enzyme activities in rice roots. AlCl3 treatment resulted in lower content of H2O2, AsA, and GSH than in controls. Exogenous AsA or GSH counteracted growth inhibition of rice roots induced by AlCl3. AlCl3 treatment increased syringaldazine peroxidase (SPOX) activities and lignin content in rice roots. Exogenous AsA or GSH prevented the decrease in H2O2 content and the increase in SPOX activities and lignin content in rice roots caused by AlCl3. Results suggest that lignification induced by low AsA or GSH content may explain the mechanism of Al-inhibited growth of rice roots.  相似文献   

18.
Summary Several endophytic diazotrophs were isolated from cultivars of rice and screened for their diazotrophy by nitrogenase assay and amplification of partial nifH gene. Ability of one of the diazotrophic endophytes, Serratia sp. (isolate EDA2 from cultivar ADT36) to colonize the rice seedlings grown in the presence of flavonoids and growth hormones, under gnotobiotic condition was assessed in cultivar ADT36 using a strain marked with transposon-based egfp and Km r . The endophytic colonization was monitored through re-isolation from different parts of rice seedlings in LB+Km plates. Addition of the flavonoids quercetin and diadzein to the growth medium increased the extent of endophytic colonization of the conjugant in rice seedlings by colonizing throughout the plant. Population and in planta nitrogenase activity of Serratia in rice seedlings were significantly increased by addition of flavonoids, quercetin and diadzein, whereas growth hormones, IAA and NAA reduced the efficiency of Serratia. The inoculation of Serratia sp. with flavonoids increased the plant biomass and biochemical constituents of rice seedlings under controlled condition.  相似文献   

19.
Jia  Zhongjun  Cai  Zucong  Xu  Hua  Li  Xiaoping 《Plant and Soil》2001,230(2):211-221
To understand the integrated effects of rice plants (variety Wuyugeng 2) on CH4 emission during the typical rice growth stage, the production, oxidation and emission of methane related to rice plants were investigated simultaneously through laboratory and greenhouse experiments. CH4 emission was significantly higher from the rice planted treatment than from the unplanted treatment. In the rice planted treatment, CH4 emission was higher at tillering stage than at panicle initiation stage. An average of 36.3% and 54.7% of CH4 produced was oxidized in the rhizosphere at rice tillering stage and panicle initiation stage, respectively, measured by using methyl fluoride (MF) technique. In the meantime, CH4 production in the planted treatments incubated under O2-free N2 condition was reduced by 44.9 and 22.3%, respectively, compared to unplanted treatment. On the contrary, the presence of rice plants strongly stimulated CH4 production by approximately 72.3% at rice ripening stage. CH4 emission through rice plants averaged 95% at the tillering stage and 89% at the panicle initiation stage. Based on these results, conclusions are drawn that higher CH4 emission from the planted treatment than from unplanted treatment could be attributed to the function of rice plants for transporting CH4 from belowground to the atmosphere at tillering and panicle initiation stage, and that a higher CH4 emission at tillering stage than at panicle initiation stage is due to the lower rhizospheric CH4 oxidation and more effective transport mediated by rice plants.  相似文献   

20.
Perenniality is one of the important topics in rice breeding which is generally accompanied by complex physiobiochemical processes. To understand the metabolic characteristics of perennial rice, in the present study, gas chromatography–mass spectrometry and enzyme-linked immunosorbent assays were used to profile the distribution patterns of 33 primary metabolites and hormones [indole-3-acetic acid (IAA) and zeatin riboside (ZR)] of annual (RD23) and perennial (Oryza longistaminata and the line AA with RD23 genetic background) rice genotypes. Results showed that both metabolites and hormones have distinct genotype and organ distribution patterns, and considerable variations were observed between the metabolites in stem bases of perennial and annual rice. Most of the metabolites, including sugars, organic acids, and amino acids, significantly accumulated in the stem bases of perennial rice by decreasing the level in roots and leaves. Fifteen metabolites consistently accumulated significantly in the stem bases of both perennial genotypes. Additionally, the organ-level IAA content and IAA/ZR ratio in the two perennials were considerably higher than those in RD23. The present study indicated that the significant accumulation of the metabolites at stem base and the higher IAA/ZR ratio are involved in the regulatory metabolism for rhizome development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号