首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2f/f) and their corresponding wild-type background mice (MyhCre.Tgfbr2WT/WT) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.  相似文献   

2.
Lin F  Yang X 《遗传学报》2010,37(9):583-591
Aortic aneurysm(AA)is a common health problem with high mortality and no effective drugs.Transforming growth factor-β (TGF-β)superfamily members regulate various cellular processes,and TGF-β signaling has key roles in development,tissue homeostasis, and diseases.Interest in the role of TGF-β signaling in the pathogenesis of AAs has recently emerged,particularly since genetic studies demonstrated an association between gene mutations in components of TGF-β signaling and AAs. However, paradoxical discoveries have implicated dysregulated TGF-β signaling in aneurysm formation,complicating the precise functional role for TGF-β in aneurysm development and progression. Furthermore, interventions targeting towards TGF-β signaling using losartan, which may represent a suitable therapeutic option for AAs, were subject to skepticism especially because of conflicting experimental results obtained from TGF-β antibody treatment without knowledge of the underlying mechanism.We propose a TGF-β aneurysm paradox,which would provide a good opportunity for the development of genetic mouse models of AA.These models would be used to clarify the mechanisms underlying TGF-β signaling, which would translate into novel pharmacologic therapies based on the new molecular discoveries.  相似文献   

3.
4.
Vascular smooth muscle cells (VSMCs) senescence contributes to abdominal aortic aneurysm (AAA) formation although the underlying mechanisms remain unclear. This study aimed to investigate the role of miR-199a-5p in regulating VSMC senescence in AAA. VSMC senescence was determined by a senescence-associated β-galactosidase (SA-β-gal) assay. RT-PCR and Western blotting were performed to measure miRNA and protein level, respectively. The generation of reactive oxygen species (ROS) was evaluated by H2DCFDA staining. Dual-luciferase reporter assay was used to validate the target gene of miR-199a-5p. VSMCs exhibited increased senescence in AAA tissue relative to healthy aortic tissue from control donors. Compared with VSMCs isolated from control donors (control-VSMCs), those derived from patients with AAA (AAA-VSMCs) exhibited increased cellular senescence and ROS production. Angiotensin II (Ang II) induced VSMC senescence by promoting ROS generation. The level of miR-199a-5p expression was upregulated in the plasma from AAA patients and Ang II–treated VSMCs. Mechanistically, Ang II treatment significantly elevated miR-199a-5p level, thereby stimulating ROS generation by repressing Sirt1 and consequent VSMC senescence. Nevertheless, Ang II–induced VSMC senescence was partially attenuated by a miR-199a-5p inhibitor or Sirt1 activator. Our study revealed that miR-199a-5p aggravates Ang II–induced VSMC senescence by targeting Sirt1 and that miR-199a-5p is a potential therapeutic target for AAA.  相似文献   

5.
Summary Platelet-derived growth factor (PDGF) and transforming growth factor beta-1(TGF-β1) were tested separately or together for the ability to stimulate migration of human aortic vascular smooth muscle cells (VSMC). PDGF (10 ng/ml) stimulated migration of VSMC over a 48-h period. TGF-β1 (10 ng/ml) had no effect on migration during the same period. VSMC exposed simultaneously to both TGF-β1 and PDGF exhibited diminished migration (50%) when compared to cells treated only with PDGF. Cells that migrated in the presence of PDGF possessed short actin cables that extended from cellular processes at the leading edge of migrating cells; focal adhesions containing the αvβ35 integrins localized to the same region. Cells grown in the presence of TGF-β1 exhibited long, intensely stained actin filaments that spanned the entire length of the cell and were similar to untreated control VSMC. Focal adhesions containing αvβ35 distributed evenly on the basal surface in both TGF-β1-treated cells and control cultures. Cellular responses to PDGF were mitigated when TGF-β1 was present in the culture medium. VSMC grown in the presence of both PDGF and TGF-β1 exhibited elongated actin filaments that were similar to nonmotile TGF-β1-treated cultures. Concomitant exposure of VSMC to PDGF and TGF-β1 resulted in focal adhesions that distributed evenly on the lower cell surface. This study suggests that TGF-β1 can partially reverse the stimulatory effect of PDGF on VSMC migration in vitro by modifying the actin cytoskeleton and the distribution of the α vβ35 integrins.  相似文献   

6.
Chronic obstructive pulmonary disease (COPD) and asthma are characterized by irreversible remodeling of the airway walls, including thickening of the airway smooth muscle layer. Perlecan is a large, multidomain, proteoglycan that is expressed in the lungs, and in other organ systems, and has been described to have a role in cell adhesion, angiogenesis, and proliferation. This study aimed to investigate functional properties of the different perlecan domains in relation to airway smooth muscle cells (ASMC). Primary human ASMC obtained from donors with asthma (n = 13), COPD (n = 12), or other lung disease (n = 20) were stimulated in vitro with 1 ng/ml transforming growth factor-β(1) (TGF-β(1)) before perlecan deposition and cytokine release were analyzed. In some experiments, inhibitors of signaling molecules were added. Perlecan domains I-V were seeded on tissue culture plates at 10 μg/ml with 1 μg/ml collagen I as a control. ASM was incubated on top of the peptides before being analyzed for attachment, proliferation, and wound healing. TGF-β(1) upregulated deposition of perlecan by ASMC from COPD subjects only. TGF-β(1) upregulated release of IL-6 into the supernatant of ASMC from all subjects. Inhibitors of SMAD and JNK signaling molecules decreased TGF-β(1)-induced perlecan deposition by COPD ASMC. Attachment of COPD ASMC was upregulated by collagen I and perlecan domains IV and V, while perlecan domain II upregulated attachment only of asthmatic ASMC. Seeding on perlecan domains did not increase proliferation of any ASMC type. TGF-β(1)-induced perlecan deposition may enhance attachment of migrating ASMC in vivo and thus may be a mechanism for ASMC layer hypertrophy in COPD.  相似文献   

7.
To understand the role of TGF-β signaling in cardiovascular development, we generated mice with conditional deletion of the TGF-β type II receptor (TβRII) gene (Tgfbr2) in cells expressing the smooth muscle cell-specific protein SM22α. The SM22α promoter was active in tissues involved in cardiovascular development: vascular smooth muscle cells (VSMCs), epicardium and myocardium. All SM22-Cre+/−/Tgfbr2 flox/flox embryos died during the last third of gestation. About half the mutant embryos exhibited heart defects (ventricular myocardium hypoplasia and septal defects). All mutant embryos displayed profound vascular abnormalities in the descending thoracic aorta (irregular outline and thickness, occasional aneurysms and elastic fiber disarray). Restriction of these defects to the descending thoracic aorta occurred despite similar levels of Tgfbr2 invalidation in the other portions of the aorta, the ductus arteriosus and the pulmonary trunk. Immunocytochemistry identified impairment of VSMC differentiation in the coronary vessels and the descending thoracic aorta as crucial for the defects. Ventricular myocardial hypoplasia, when present, was associated to impaired α-SMA differentiation of the epicardium-derived coronary VSMCs. Tgfbr2 deletion in the VSMCs of the descending thoracic aorta diminished the number of α-SMA-positive VSMC progenitors in the media at E11.5 and drastically decreased tropoelastin (from E11.5) and fibulin-5 (from E.12.5) synthesis and/or deposition. Defective elastogenesis observed in all mutant embryos and the resulting dilatation and probable rupture of the descending thoracic aorta might explain the late embryonic lethality. To conclude, during mouse development, TGF-β plays an irreplaceable role on the differentiation of the VSMCs in the coronary vessels and the descending thoracic aorta.  相似文献   

8.
9.
Negative regulation of TGF-β signaling in development   总被引:4,自引:0,他引:4  
Chen YG  Meng AM 《Cell research》2004,14(6):441-449
The TGF-β superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-β signaling with focus on its roles in vertebrate development.  相似文献   

10.
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.  相似文献   

11.
Epidermal stem cells residing in different locations in the skin continuously self-renew and differentiate into distinct cell lineages to maintain skin homeostasis during postnatal life. Murine epidermal stem cells located at the bulge region are responsible for replenishing the hair lineage, while the stem cells at the isthmus regenerate interfollicular epidermis and sebaceous glands. In vitro cell culture and in vivo animal studies have implicated TGF-β signaling in the maintenance of epidermal and hair cycle homeostasis. Here, we employed a triple transgenic animal model that utilizes a combined Cre/loxP and rtTA/TRE system to allow inducible and reversible inhibition of TGF-β signaling in hair follicle lineages and suprabasal layer of the epidermis. Using this animal model, we have analyzed the role of TGF-β signaling in distinct phases of the hair cycle. Transient abrogation of TGF-β signaling does not prevent catagen progression; however, it induces aberrant proliferation and differentiation of isthmus stem cells to epidermis and sebocyte lineages and a blockade in anagen re-entry as well as results in an incomplete hair shaft development. Moreover, ablation of TGF-β signaling during anagen leads to increased apoptosis in the secondary hair germ and bulb matrix cells. Blocking of TGF-β signaling in bulge stem cell cultures abolishes their colony-forming ability, suggesting that TGF-β signaling is required for the maintenance of bulge stem cells. At the molecular level, inhibition of TGF-β signaling results in a decrease in both Lrig1-expressing isthmus stem cells and Lrg5-expressing bulge stem cells, which may account for the phenotypes seen in our animal model. These data strongly suggest that TGF-β signaling plays an important role in regulating the proliferation, differentiation, and apoptosis of distinct epithelial stem cell populations in hair follicles.  相似文献   

12.
13.
We earlier reported synergy between tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) for apoptosis in human umbilical vein endothelium (HUVEC). Here, we study morphological change by circularity measurement of HUVEC surviving this cytokine induced synergistic apoptosis. Contrasting with reports by others studying bovine endothelium, HUVEC did not change morphology in response to TGF-β1. TNF-α markedly elongated cells (p < 0.001) and this further increased with combination of the two cytokines (p < 0.001), while elongation was accompanied by increased actin stress fibres. Transdifferentiation of HUVEC to a smooth muscle cell phenotype as reported elsewhere was excluded in the current study.  相似文献   

14.

Background

The diversity of cell types and tissue types that originate throughout development derives from the differentiation potential of embryonic stem cells and somatic stem cells. While the former are pluripotent, and thus can give rise to a full differentiation spectrum, the latter have limited differentiation potential but drive tissue remodeling. Additionally cancer tissues also have a small population of self-renewing cells with stem cell properties. These cancer stem cells may arise through dedifferentiation from non-stem cells in cancer tissues, illustrating their plasticity, and may greatly contribute to the resistance of cancers to chemotherapies.

Scope of review

The capacity of the different types of stem cells for self-renewal, the establishment and maintenance of their differentiation potential, and the selection of differentiation programs are greatly defined by the interplay of signaling molecules provided by both the stem cells themselves, and their microenvironment, the niche. Here we discuss common and divergent roles of TGF-β family signaling in the regulation of embryonic, reprogrammed pluripotent, somatic, and cancer stem cells.

Major conclusions

Increasing evidence highlights the similarities between responses of normal and cancer stem cells to signaling molecules, provided or activated by their microenvironment. While TGF-β family signaling regulates stemness of normal and cancer stem cells, its effects are diverse and depend on the cell types and physiological state of the cells.

General significance

Further mechanistic studies will provide a better understanding of the roles of TGF-β family signaling in the regulation of stem cells. These basic studies may lead to the development of a new therapeutic or prognostic strategies for the treatment of cancers. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

15.
One of the main complications in patients with liver fibrosis is the development of hepatocellular carcinoma (HCC). An understanding of the molecular mechanisms leading to HCC is important in order to be able to design new pharmacological agents serving either to prevent or mitigate the outcome of this malignancy. The transforming growth factor-beta (TGF-β) cytokine and its isoforms initiate a signaling cascade which is closely linked to liver fibrosis, cirrhosis and subsequent progression to HCC. Because of its role in these stages of disease progression, TGF-β appears to play a unique role in the molecular pathogenesis of HCC. Thus, it is a promising target for pharmacological treatment strategies. Recent studies have shown that inhibition of TGF-β signaling results in multiple synergistic down-stream effects which will likely improve the clinical outcome in HCC. We also review a number of TGF-β inhibitors, most of which are still in a preclinical stage of development, but may soon be available for trial in HCC patients. Hence, it is anticipated that there will soon be new agents available for clinical investigations to evaluate the role of the TGF-β-associated signaling in this deadly cancer.  相似文献   

16.
17.
BackgroundRecently, we demonstrated that losartan reduced the aortic root dilatation rate (AoDR) in adults with Marfan syndrome (MFS); however, responsiveness was diverse. The aim was to determine the role of transforming growth factor-β (TGF-β) as therapeutic biomarker for effectiveness of losartan on AoDR.MethodsBaseline plasma TGF-β levels of 22 healthy controls and 99 MFS patients, and TGF-β levels after 1 month of losartan treatment in 42 MFS patients were measured. AoDR was assessed by magnetic resonance imaging at baseline and after 3 years of follow-up.ResultsPatients with MFS had higher TGF-β levels compared with healthy controls (121 pg/ml versus 54 pg/mL, p = 0.006). After 1 month of therapy, losartan normalised the TGF-β level in 15 patients (36%); the other 27 patients (64%) showed a significant increase of TGF-β. After 3 years of losartan therapy, patients with a decrease in TGF-β had significantly higher AoDR compared with patients with increased TGF-β (1.5 mm/3 years versus 0.5 mm/3 years, p = 0.04). Patients showing a decrease in TGF-β after losartan therapy had significantly elevated baseline TGF-β levels compared with patients with increased TGF-β (189 pg/ml versus 94 pg/ml, p = 0.05).ConclusionPatients responding to losartan therapy with a reduction of the plasma TGF-β level had higher baseline TGF-β levels and a higher AoDR. Most likely, TGF-β levels may be considered to be a readout of the disease state of the aorta. We propose that increased angiotensin II is the initiator of aorta dilatation and is responsible for increased TGF-β levels in MFS. The concept of TGF-β as initiator of aortic dilatation in MFS patients should be nuanced.  相似文献   

18.
19.
20.
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号