首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparan sulfate proteoglycans (HSPGs) are essential players in several steps of tumor-associated angiogenesis. As co-receptors for several pro-angiogenic factors such as VEGF and FGF, HSPGs regulate receptor–ligand interactions and play a vital role in signal transduction. Previously, we have employed an enzymatic strategy to show the importance of cell surface HSPGs in endothelial tube formation in vitro. We have recently found several fluoro-xylosides that can selectively inhibit proteoglycan synthesis in endothelial cells. The current study demonstrates that these fluoro-xylosides are effective inhibitors of endothelial tube formation in vitro using a matrigel based assay to simulate tumor-associated angiogenesis. These first generation scaffolds offer a promising stepping-stone to the discovery of more potent fluoro-xylosides that can effectively neutralize tumor growth.  相似文献   

2.
Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor–ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i) avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.  相似文献   

3.
G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor–ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs.  相似文献   

4.
With increasing donor age, cultured human fibroblasts express fewer epidermal growth factor receptors and display decreased mitogenic responsiveness to epidermal growth factor. To determine age-associated differences in epidermal growth factor receptor phosphorylation and traffic kinetics, we studied in fibroblasts derived from donors of different ages autophosphorylation of the receptor after ligand binding and trafficking of the receptor–ligand complexes. We now report an age-associated delay in the rate of receptor phosphorylation after epidermal growth factor stimulation. Furthermore, receptor/ligand trafficking is affected by aging. There is an age-associated decrease and delay in the number of occupied receptors that are transported intracellularly and in their rate of clearance from the plasma membrane. Our data show that aging affects receptor/ligand activation and processing and suggest that the decreased cellular mitogenic response with aging may be, at least in part, the result of decrements in receptor activation and processing.  相似文献   

5.
Eph–ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph–ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph–ephrin complexes. Analysis of the Eph–ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph–ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein–protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph–ephrin complex.  相似文献   

6.
The genetic basis of odorant-specific variations in human olfactory thresholds, and in particular of enhanced odorant sensitivity (hyperosmia), remains largely unknown. Olfactory receptor (OR) segregating pseudogenes, displaying both functional and nonfunctional alleles in humans, are excellent candidates to underlie these differences in olfactory sensitivity. To explore this hypothesis, we examined the association between olfactory detection threshold phenotypes of four odorants and segregating pseudogene genotypes of 43 ORs genome-wide. A strong association signal was observed between the single nucleotide polymorphism variants in OR11H7P and sensitivity to the odorant isovaleric acid. This association was largely due to the low frequency of homozygous pseudogenized genotype in individuals with specific hyperosmia to this odorant, implying a possible functional role of OR11H7P in isovaleric acid detection. This predicted receptor–ligand functional relationship was further verified using the Xenopus oocyte expression system, whereby the intact allele of OR11H7P exhibited a response to isovaleric acid. Notably, we also uncovered another mechanism affecting general olfactory acuity that manifested as a significant inter-odorant threshold concordance, resulting in an overrepresentation of individuals who were hyperosmic to several odorants. An involvement of polymorphisms in other downstream transduction genes is one possible explanation for this observation. Thus, human hyperosmia to isovaleric acid is a complex trait, contributed to by both receptor and other mechanisms in the olfactory signaling pathway.  相似文献   

7.
噬菌体展示技术及其在肿瘤研究中的应用   总被引:1,自引:0,他引:1  
噬菌体表面展示技术是一项特异性多肽或蛋白的筛选技术,它将随机序列的多肽或蛋白片段与噬菌体衣壳蛋白融合表达而呈现于病毒表面,被展示的多肽能保持相对独立的空间结构,使其能够与配体作用而达到模仿性筛选特异性分子表位,从而提供了高通量高效率的筛选系统。近年来噬菌体展示技术已广泛应用于肿瘤抗原抗体库的建立、单克隆抗体制备、多肽筛选、疫苗研制、肿瘤相关抗原筛选和抗原表位研究、药物设计、癌症检测和诊断、基因治疗及细胞信号转导研究等。就近年来噬菌体展示技术在肿瘤相关研究中的运用作以综述。  相似文献   

8.
Legendre D  Fastrez J 《Gene》2002,290(1-2):203-215
Phage display has evolved during the past 15 years as a powerful technique to select, from libraries of peptides or proteins, binders for various targets or to evolve new functions in proteins. In recent years, the knowledge acquired in phage display technology was exploited to engineer phages as vehicles for receptor-mediated gene delivery. The first vectors generated provided the proof of the concept that development of gene delivery vehicles based on phages was feasible. Results obtained showed that the level of receptor ligand display was an essential factor that determines the efficiency of transduction and suggested that phagemids might be more appropriate than phages for gene delivery. However, due to the limitations of the existing display systems, vectors constructed up to now allowed only relatively low levels of ligand display. The transduction efficiency of these vectors was relatively poor. Here, we describe the construction and optimization of a new phagemid display system that was designed to allow the functional selection of peptides that promote gene delivery from phagemids in a high display format. Peptides are displayed on every copy of the major coat protein pVIII and are expressed from the phagemid itself. The phagemid is rescued as particles by a modified R408 helper phage, deficient in pVIII production. Besides an expression cassette for pVIII, the phagemid also contains the SV40 origin of replication, the GFP gene and the neomycin resistance marker. As a model we constructed a library of octapeptides and showed that the library is amenable to selection on cos-7 cells. Several selection approaches were investigated and a preliminary analysis of the peptides selected was carried out.  相似文献   

9.
Two-dimensional (2D) kinetics of receptor–ligand interactions governs cell adhesion in many biological processes. While the dissociation kinetics of receptor–ligand bond is extensively investigated, the association kinetics has much less been quantified. Recently receptor–ligand interactions between two surfaces were investigated using a thermal fluctuation assay upon biomembrane force probe technique (Chen et al. in Biophys J 94:694–701, 2008). The regulating factors on association kinetics, however, are not well characterized. Here we developed an alternative thermal fluctuation assay using optical trap technique, which enables to visualize consecutive binding–unbinding transition and to quantify the impact of microbead diffusion on receptor–ligand binding. Three selectin constructs (sLs, sPs, and PLE) and their ligand P-selectin glycoprotein ligand 1 were used to conduct the measurements. It was indicated that bond formation was reduced by enhancing the diffusivity of selectin-coupled carrier, suggesting that carrier diffusion is crucial to determine receptor–ligand binding. It was also found that 2D forward rate predicted upon first-order kinetics was in the order of sPs > sLs > PLE and bond formation was history-dependent. These results further the understandings in regulating association kinetics of surface-bound receptor–ligand interactions.  相似文献   

10.
Upon the binding of insulin or epidermal growth factor to their cognate receptors on the liver parenchymal plasmalemma, signal transduction and receptor internalization are near co-incident. Indeed, the rapidity and extent; of ligand mediated receptor internalization into endosomes in liver as well as other organs predicts that signal transduction is regulated at this intracellular locus. Although internalization has been thought as a mechanism to attenuate ligand mediated signal transduction responses, detailed studies of internalized receptors in isolated liver endosomes suggest an alternative scenario whereby selective signal transduction pathways can be accessed at this locus.  相似文献   

11.
Homogeneous luminescence-based microplate assays are desirable in high-throughput screening of new nuclear receptor regulators. Time-resolved fluorescence resonance energy transfer (TR–FRET) assays provide high sensitivity due to low background signal. The TR–FRET concept requires labeling of both ligand and receptor, making the assay format and its development relatively expensive and complex compared with single-label methods. To overcome the limitations of the multilabel methods, we have developed a single-label method for estrogen receptor (ER)–ligand binding based on quenching resonance energy transfer (QRET), where estradiol labeled with luminescent europium(III) chelate (Eu–E2) is quenched using soluble quencher molecules. The luminescence signal of Eu–E2 on binding to full-length ER is protected from quenching while increasing competitor concentrations displace Eu–E2 from the receptor, reducing the signal. The QRET method was paralleled with a commercial fluorescence polarization (FP) assay. The measured signal-to-background (S/B) values for estradiol, estrone, fulvestrant, and tamoxifen obtained for the QRET assay (5.8–9.2) were clearly higher than the S/B values for the FP assay (1.3–1.5). A Kd value of 30 nM was calculated for binding of Eu–E2 to ER from a saturation binding isotherm. The QRET method provides an attractive new single-label assay format for nuclear receptor ligand screening.  相似文献   

12.
We show that the affinity electrophoresis analysis of RNA–small molecule interactions can be made quantifiable by cross-linking the ligand to the gel matrix. Using an RNA–aminoglycoside model system to verify our method, we attached an acryloyl chloride molecule to the aminoglycosides paromomycin and neomycin B to synthesize an acrylamide–aminoglycoside monomer. This molecule was then used as a component in gel polymerization for affinity electrophoresis, covalently attaching an aminoglycoside molecule to the gel matrix. To test RNA binding to the cross-linked aminoglycosides, we used the aminoglycoside binding RNA molecule derived from thymidylate synthase messenger RNA (mRNA) that contains a C–C mismatch. Binding is indicated by the difference in RNA mobility between gels with cross-linked ligand, with ligand embedded during polymerization, and with no ligand present. Critically, the predicted straight line relationship between the reciprocal of the relative migration of the RNA and the ligand concentration is obtained when using cross-linked aminoglycosides, whereas a straight line is not obtained using embedded aminoglycosides. Average apparent dissociation constants are determined from the slope of the line from these plots. This method allows an easy quantitative comparison between different nucleic acid molecules for a small molecule ligand.  相似文献   

13.
Secreted and cell-surface-localized members of the immunoglobulin superfamily (IgSF) play central roles in regulating adaptive and innate immune responses and are prime targets for the development of protein-based therapeutics. An essential activity of the ectodomains of these proteins is the specific recognition of cognate ligands, which are often other members of the IgSF. In this work, we provide functional insight for this important class of proteins through the development of a clustering algorithm that groups together extracellular domains of the IgSF with similar binding preferences. Information from hidden Markov model-based sequence profiles and domain architecture is calibrated against manually curated protein interaction data to define functional families of IgSF proteins. The method is able to assign 82% of the 477 extracellular IgSF protein to a functional family, while the rest are either single proteins with unique function or proteins that could not be assigned with the current technology. The functional clustering of IgSF proteins generates hypotheses regarding the identification of new cognate receptor–ligand pairs and reduces the pool of possible interacting partners to a manageable level for experimental validation.  相似文献   

14.
Random peptide ligands displayed on viral capsids are emerging tools for selection of targeted gene transfer vectors even without prior knowledge of the potential target cell receptor. We have previously introduced adeno-associated viral (AAV)-displayed peptide libraries that ensure encoding of displayed peptides by the packaged AAV genome. A major limitation of these libraries is their contamination with wild-type (wt) AAV. Here we describe a novel and improved library production system that reliably avoids generation of wt AAV by use of a synthetic cap gene. Selection of targeted AAV vectors from wt-containing and the novel wt-free libraries on cell types with different permissivity for wt AAV2 replication suggested the superiority of the wt-free library. However, from both libraries highly specific peptide sequence motifs were selected which improved transduction of cells with moderate or low permissivity for AAV2 replication. Strong reduction of HeLa cell transduction compared to wt AAV2 and only low level transduction of non-target cells by some selected clones showed that not only the efficiency but also the specificity of gene transfer was improved. In conclusion, our study validates and improves the unique potential of virus display libraries for the development of targeted gene transfer vectors.  相似文献   

15.
Methodology has been developed which gives a specific measure of the interaction of an SH2 domain with a phosphopeptide ligand using scintillation proximity assay (SPA) technology. Recombinant SH2 domains were expressed from a T7 RNA polymerase-based vector inEscherichia colias fusions to the C-terminus of the FK506-binding protein (FKBP) and purified from freeze-thaw lysates in high yield by affinity chromatography using immobilized phosphopeptides. For binding assays the phosphopeptide ligands were synthesized with a biotin tag and the FKBP fusion proteins were noncovalently radiolabeled with commercially available [3H]dihydroFK506. Complexes of tritiated SH2 fusion protein and biotinyl-phosphopeptide were then captured on streptavidin-coated SPA beads and counted. The modular protocol is an equilibrium technique that does not employ washing steps or specialized radiochemical syntheses required in other binding assays. The utility of the assay has been demonstrated in an examination of the ligand specificity of the SH2 domains of the tyrosine kinases ZAP70, Syk, and Lck. The methodology is potentially generalizable to any receptor–ligand interaction in which one component can be expressed as a fusion partner with FKBP and the other component can be captured on a SPA bead.  相似文献   

16.
The screening of diverse libraries of small molecules created by combinatorial synthetic methods is a recent development which has the potential to accelerate the identification of lead compounds in drug discovery. We have developed a direct and rapid method to identify lead compounds in libraries involving affinity selection and mass spectrometry. In our strategy, the receptor or target molecule of interest is used to isolate the active components from the library physically, followed by direct structural identification of the active compounds bound to the target molecule by mass spectrometry. In a drug design strategy, structurally diverse libraries can be used for the initial identification of lead compounds. Once lead compounds have been identified, libraries containing compounds chemically similar to the lead compound can be generated and used to optimize the binding characteristics. These strategies have also been adopted for more detailed studies of protein–ligand interactions.  相似文献   

17.
The G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II) type-1 receptor (hAT1R) as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO)-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells.  相似文献   

18.
Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. The conventional methods used to observe intracellular reactions have not been convenient with several steps such as labeling and washing steps prior to the readout. Consequently, there is a critical need for label-free observation techniques for monitoring intracellular reactions. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a high-resolution two-dimensional surface plasmon resonance (2D–SPR) imager for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via local refractive index change in PC12 cells adhered on a gold sensor slide without any indicator reagent. PC12 cells were stimulated with KCl and phorbol-12-myristate-13-acetate (PMA, a protein kinase C [PKC] activator) at different concentrations in order to induce intracellular PKC translocation. 2D–SPR signal (reflection intensity change) is very consistent with the cellular response normally detected for these stimulants. Our results suggest that complex intracellular reactions could be real-time monitored and characterized by the 2D–SPR imager. It is further expected that signal transmission that was followed by the translocation of signaling proteins could be observed at the single cell level with the high-resolution 2D–SPR imager.  相似文献   

19.
The AtoS–AtoC signal transduction system in E. coli, which induces the atoDAEB operon for the growth of E. coli in short-chain fatty acids, can positively modulate the levels of poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis, a biopolymer with many physiological roles in E. coli. Increased amounts of cPHB were synthesized in E. coli upon exposure of the cells to acetoacetate, the inducer of the AtoS–AtoC two-component system. While E. coli that overproduce both components of the signal transduction system synthesize higher quantities of cPHB (1.5–4.5 fold), those that overproduce either AtoS or AtoC alone do not display such a phenotype. Lack of enhanced cPHB production was also observed in cells overexpressing AtoS and phosphorylation-impaired AtoC mutants. The results were not affected by the nature of the carbon source used, i.e., glucose, acetate or acetoacetate. An E. coli strain with a deletion in the atoS–atoC locus (ΔatoSC) synthesized lower amounts of cPHB compared to wild-type cells. When the ΔatoSC strain was transformed with a plasmid carrying a 6.4-kb fragment encoding the AtoS–AtoC system, cPHB biosynthesis was restored to the level of the atoSC+ cells. Introduction of a multicopy plasmid carrying a functional atoDAEB operon, but not one with a promoterless operon, resulted in increased cPHB synthesis only in atoSC+ cells in the presence of acetoacetate. These results indicate that the presence of both a functional AtoS–AtoC two-component signal transduction system and a functional atoDAEB operon is critical for the enhanced cPHB biosynthesis in E. coli.  相似文献   

20.
The ability to engineer an all‐or‐none cellular response to a given signaling ligand is important in applications ranging from biosensing to tissue engineering. However, synthetic gene network ‘switches’ have been limited in their applicability and tunability due to their reliance on specific components to function. Here, we present a strategy for reversible switch design that instead relies only on a robust, easily constructed network topology with two positive feedback loops and we apply the method to create highly ultrasensitive (nH>20), bistable cellular responses to a synthetic ligand/receptor complex. Independent modulation of the two feedback strengths enables rational tuning and some decoupling of steady‐state (ultrasensitivity, signal amplitude, switching threshold, and bistability) and kinetic (rates of system activation and deactivation) response properties. Our integrated computational and synthetic biology approach elucidates design rules for building cellular switches with desired properties, which may be of utility in engineering signal‐transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号