首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastric H+/K+-ATPase or vacuolar-ATPases (V-ATPases) are critical for the cancer cells survival and growth in the ischemic microenvironment by extruding protons from the cell. The drugs which inhibit V-ATPases are known as proton pump inhibitors (PPIs). In the present study, we aimed to evaluate the anticancer efficacy of pantoprazole (PPZ) and its consequences on NF-κB signaling in glioma cells. We have used MTT and clonogenic assay to show PPZ effect on glioma cell growth. Propidium iodide and rhodamine 123 staining were performed to demonstrate cell cycle arrest and mitochondrial depolarization. TUNEL staining was used to evidence apoptosis after PPZ treatment. Immunoblotting and immunofluorescence microscopy were performed to depict protein levels and localization, respectively. Luciferase assay was performed to confirm NF-κB suppression by PPZ. Our results revealed PPZ treatment inhibits cell viability or growth and induced cell death in a dose- and time-dependent manner. PPZ exposure arrested G0/G1 cyclic phase and increased TUNEL positivity, caspase-3 and PARP cleavage with altered pro and anti-apoptotic proteins. PPZ also induced ROS levels and depolarized mitochondria (Δψm) with increased cytosolic cytochrome c level. Further, PPZ suppressed TNF-α stimulated NF-κB signaling by repressing p65 nuclear translocation. NF-κB luciferase reporter assays revealed significant inhibition of NF-κB gene upon PPZ treatment. PPZ exposure also reduced the expression of NF-κB-associated genes, such as cyclin-D1, iNOS, and COX-2, which indicate NF-κB inhibition. Altogether, the present study disclosed that PPZ exerts mitochondrial apoptosis and attenuates NF-κB signaling suggesting PPZ can be an effective and safe anticancer drug for glioma.  相似文献   

2.
3.
目的:研究LRP16在电离辐射激活核转录因子NF-κB信号转导通路中的作用。方法:在HeLa细胞中,分别运用双萤光素酶分析和Western印迹检测LRP16对κB-Luc报告基因及NF-κB下游靶基因表达的影响。结果:双萤光素酶实验证实LRP16过表达促进电离辐射诱导的κB-Luc活性,而抑制LRP16则降低电离辐射诱导的κB-Luc活性;Western印迹结果显示,LRP16过表达促进电离辐射诱导NF-κB的下游抗凋亡基因XIAP的表达,与之相对应的是,抑制LRP16降低电离辐射诱导NF-κB下游抗凋亡基因XIAP的表达。结论:LRP16可以调节电离辐射诱导NF-κB的转录活性,并且调控NF-κB下游抗凋亡基因XIAP的表达,为进一步阐明电离辐射激活NF-κB转录活性的分子机制奠定了基础。  相似文献   

4.
This study investigates the efficacy of carnosic acid (CA), a polyphenolic diterpene, isolated from the plant rosemary (Rosemarinus officinalis), on androgen-independent human prostate cancer PC-3 cells. CA induced anti-proliferative effects in PC-3 cells in a concentration- and time-dependent manner, which was due to apoptotic induction as evident from flow-cytometry, DNA laddering and TUNEL assay. Apoptosis was associated with the activation of caspase-8, -9, -3 and -7, increase in Bax:Bcl-2 ratio, release of cytochrome-c and decrease in expression of inhibitor of apoptosis (IAP) family of proteins. Apoptosis was attenuated upon pretreatment with specific inhibitors of caspase-8 (Z-IETD-fmk) and caspase-9 (Z-LEHD-fmk) suggesting the involvement of both intrinsic and extrinsic apoptotic cascades. Further, apoptosis resulted from the inhibition of IKK/NF-κB pathway as evident from decreased DNA binding activity, nuclear translocation of p50 and p65 and IκBα phosphorylation. The down-regulation of IKK/NF-κB was associated with inhibition of Akt phosphorylation and its kinase activity with a concomitant increase in the serine/threonine protein phosphatase 2A (PP2A) activity. Pharmacologic inhibition of PP2A by okadaic acid and calyculin A, significantly reversed CA-mediated apoptotic events in PC-3 cells indicating that CA induced apoptosis by activation of PP2A through modulation of Akt/IKK/NF-κB pathway. In addition, CA induced apoptosis in another androgen refractory prostate cancer DU145 cells via intrinsic pathway as evidenced from the activation of caspase 3, cleavage of PARP, increase in Bax:Bcl-2 ratio and cytochrome-c release. Carnosic acid, therefore, may have the potential for use in the prevention and/or treatment of prostate cancer.  相似文献   

5.
6.
Azadirachta indica (neem tree) is used in traditional Indian medicine for its pharmacological properties including cancer prevention and treatment. Here, we studied a neem extract's anti-inflammatory potential via the nuclear factor-κB (NF-κB) signaling pathway, linked to cancer, inflammation, and apoptosis. Cultured human leukemia cells were treated with a methanolic neem leaf extract with or without tumor necrosis factor (TNF)-α stimulation. Inhibition of NF-κB activity was demonstrated by luciferase assay and electrophoretic mobility shift assay (EMSA). Inhibition of viability by neem extracts was assessed by luminescent assays. Western blot analysis allowed assessing the inhibitory effect of the neem extract on TNF-α-induced degradation of inhibitor of κB (IκB) and nuclear translocation of the NF-κB p50/p65 heterodimer. Inhibition of IκB kinase (IKK) activity was shown as well as the effect of neem extract on the induction of apoptotic cell death mechanisms by nuclear fragmentation analysis and flow cytometry analysis. In conclusion, our data provide evidence for a strong effect of the neem extract on pro-inflammatory cell signaling and apoptotic cell death mechanisms, contributing to a better understanding of the mechanisms triggered by Azadirachta indica.  相似文献   

7.
There is now circumstantial evidence that tissue factor pathway inhibitor (TFPI) is not only a major anticoagulant, but also has proapoptotic properties. The current study was designed to address the role of TFPI on signalling pathways and apoptosis. The non-TFPI expressing cell line CHO-K1 was stably transfected with pcDNA3.1/V5-His-TOPO-TFPI and control cells were established by transfecting the CHO-K1 cells with pcDNA3.1/V5-His-TOPO. Sodium butyrate (NaBut) has been shown to induce the expression of recombinant proteins. Here we have used NaBut to increase the expression of TFPI as assessed by qRT-PCR and ELISA. Compared to the control cells, TFPI induced apoptosis in a concentration dependent manner as measured by a cell death detection assay. Independent of caspase-3 activation an increased cleavage of PARP was detected in the TFPI expressing cells. This was accompanied by downregulation of Bcl-XL, elevated levels of Bax, and increased translocation of the apoptosis initiating factor. Increased DNA binding activity of NF-κB was revealed by electrophoretic mobility shift assay when the TFPI level was elevated by NaBut together with an increased translocation of the NF-κB subunit p65. The results indicate that TFPI affected the apoptotic activity through a process independent of caspase-3, and was also able to increase the activation of the NF- κB pathway.  相似文献   

8.
9.
The role of viral hemorrhagic septicemia virus (VHSV) NV gene in nuclear factor-κB (NF-κB) activation was investigated. Epithelioma papulosum cyprini (EPC) cells pre-treated with tumor necrosis factor (TNF)-α showed a strong resistance against VHSV infection, but cells treated with TNF-α after VHSV infection showed no resistance, suggesting that immediate early TNF-α-mediated responses inhibit VHSV replication. Activation of NF-κB is a key step in TNF-α-mediated immunomodulatory pathways. In this study, activation of NF-κB by TNF-α exposure was inhibited in EPC cells harboring NV gene expressing vectors, indicating that the NV gene of VHSV can suppress TNF-α-mediated NF-κB activation. Furthermore, the NV gene knock-out recombinant VHSV (rVHSV-ΔNV-EGFP) induced significantly higher NF-κB activity in EPC cells than wild-type VHSV, suggesting that VHSV adopted a strategy to suppress early activation of NF-κB in host cells through and NV gene.  相似文献   

10.
11.
The acute-phase proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) demonstrate high-level expression and pleiotropic biological effects, and contribute to the progression and persistence of rheumatoid arthritis (RA). Acid hydrarthrosis is also an important pathological characteristic of RA, and the acid-sensing ion channel 1a (ASIC1a) plays a critical role in acidosis-induced chondrocyte cytotoxicity. However, the roles of IL-1β and TNF-α in acid-induced apoptosis of chondrocytes remain unclear. Rat adjuvant arthritis and primary articular chondrocytes were used as in vivo and in vitro model systems, respectively. ASIC1a expression in articular cartilage was increased and highly colocalized with nuclear factor (NF)-κB expression in vivo. IL-1β and TNF-α could upregulate ASIC1a expression. These cytokines activated mitogen-activated protein kinase and NF-κB pathways in chondrocytes, while the respective inhibitors of these signaling pathways could partially reverse the ASIC1a upregulation induced by IL-1β and TNF-α. Dual luciferase and gel-shift assays and chromatin immunoprecipitation-polymerase chain reaction demonstrated that IL-1β and TNF-α enhanced ASIC1a promoter activity in chondrocytes by increasing NF-κB DNA-binding activities, which was in turn prevented by the NF-κB inhibitor ammonium pyrrolidinedithiocarbamate. IL-1β and TNF-α also decreased cell viability but enhanced LDH release, intracellular Ca2+ concentration elevation, loss of mitochondrial membrane potential, cleaved PARP and cleaved caspase-3/9 expression, and apoptosis in acid-stimulated chondrocytes, which effects could be abrogated by the specific ASIC1a inhibitor psalmotoxin-1 (PcTX-1), ASIC1a-short hairpin RNA or calcium chelating agent BAPTA-AM. These results indicate that IL-1β and TNF-α can augment acidosis-induced cytotoxicity through NF-κB-dependent up-regulation of ASIC1a channel expression in primary articular chondrocytes.  相似文献   

12.
Constitutive active NF-κB have been shown to protect cutaneous T cell lymphoma (CTCL) cells from apoptosis. In the present study, we have studied the cytotoxic potential of nitric oxide generating compound, sodium nitroprusside (SNP) on CTCL cell line, HuT-78. Treatment of cells with SNP resulted in decrease in mitochondrial membrane potential, cytochrome c release, activation of caspase-3 and poly (ADP ribose) polymerase cleavage. SNP treatment inhibited activation of NF-κB in a concentration dependent manner. SNP increased the expression of IκBα without affecting the phosphorylation of IκBα. Downregulation of NF-κB by SNP decreased p65 nuclear translocation as evident by confocal fluorescence microscopy. Further it was found that SNP treatment caused downregulation of Bcl-2 family member (Bcl-xl) in HuT-78 cells. Thus, we have provided evidence that SNP induces apoptosis in CTCL cell line, HuT-78 by downregulating constitutive NF-κB and thereby Bcl-xl expression.  相似文献   

13.
14.
The multifunctional caspase-2 protein is involved in apoptosis, NF-κB regulation, and tumor suppression in mice. However, the mechanisms of caspase-2 responsible for tumor suppression remain unclear. Here we identified two sites of caspase-2, the catalytic Cys-320 site and the Ser-139 site, to be important for suppression of cellular transformation and tumorigenesis. Using SV40- and K-Ras-transformed caspase-2 KO mouse embryonic fibroblast cells reconstituted with expression of wild-type, catalytic dead (C320A), or Ser-139 (S139A) mutant caspase-2, we demonstrated that similar to caspase-2 deficiency, when Cys-320 and Ser-139 were mutated, caspase-2 lost its ability to inhibit cellular transformation and tumorigenesis. These mutant cells exhibited enhanced cell proliferation, elevated clonogenic activity, accelerated anchorage-independent growth, and transformation and were highly tumorigenic, rapidly producing large tumors in athymic nude mice. Investigation into the underlying mechanism showed that these two residues are needed for caspase-2 to suppress NF-κB activity, promote apoptosis, and sustain the G(2)/M checkpoint following DNA damage induction. In addition, tumors in nude mice derived from the two mutant cell lines had higher constitutive NF-κB activity and elevated expression of NF-κB targets of antiapoptotic proteins Bcl-xL, XIAP, and cIAP2. A reduction in caspase-2 mRNA was associated with multiple types of cancers in patients. Together, these observations suggest the combined functions of caspase-2 in suppressing NF-κB activation, promoting apoptosis, and sustaining G(2)/M checkpoint contribute to caspase-2 tumor-suppressing function and that caspase-2 may also impact tumor suppression in humans. These findings provide insight into tumor suppression at the cross-roads of apoptosis, cell cycle checkpoint, and NF-κB pathways.  相似文献   

15.
Lys63-linked polyubiquitination of transforming growth factor-β-activated kinase 1 (TAK1) has an important role in tumor necrosis factor-α (TNFα)-induced NF-κB activation. Using a functional genomic approach, we have identified ubiquitin-specific peptidase 4 (USP4) as a deubiquitinase for TAK1. USP4 deubiquitinates TAK1 in vitro and in vivo. TNFα induces association of USP4 with TAK1 to deubiquitinate TAK1 and downregulate TAK1-mediated NF-κB activation. Overexpression of USP4 wild type, but not deuibiquitinase-deficient C311A mutant, inhibits both TNFα- and TAK1/TAB1 co-overexpression-induced TAK1 polyubiquitination and NF-κB activation. Notably, knockdown of USP4 in HeLa cells enhances TNFα-induced TAK1 polyubiquitination, IκB kinase phosphorylation, IκBα phosphorylation and ubiquitination, as well as NF-κB-dependent gene expression. Moreover, USP4 negatively regulates IL-1β-, LPS- and TGFβ-induced NF-κB activation. Together, our results demonstrate that USP4 serves as a critical control to downregulate TNFα-induced NF-κB activation through deubiquitinating TAK1.  相似文献   

16.
Binding of TNF to TNF receptor-1 can give a pro-survival signal through activation of p65/RelA NF-κB, but also signals cell death. To determine the roles of FLICE-inhibitory protein (FLIP) and caspase-8 in TNF-induced activation of NF-κB and apoptosis, we used mouse embryonic fibroblasts derived from FLIP and caspase-8 gene-deleted mice, and treated them with TNF and a smac-mimetic compound that causes degradation of cellular inhibitor of apoptosis proteins (cIAPs). In cells treated with smac mimetic, TNF and Fas Ligand caused wild-type and FLIP(-/-) MEFs to die, whereas caspase-8(-/-) MEFs survived, indicating that caspase-8 is necessary for death of MEFs triggered by these ligands when IAPs are degraded. By contrast, neither caspase-8 nor FLIP was required for TNF to activate p65/RelA NF-κB, because IκB was degraded, p65 translocated to the nucleus, and an NF-κB reporter gene activated normally in caspase-8(-/-) or FLIP(-/-) MEFs. Reconstitution of FLIP(-/-) MEFs with the FLIP isoforms FLIP-L, FLIP-R, or FLIP-p43 protected these cells from dying when treated with TNF or FasL, whether or not cIAPs were depleted. These results show that in MEFs, caspase-8 is necessary for TNF- and FasL-induced death, and FLIP is needed to prevent it, but neither caspase-8 nor FLIP is required for TNF to activate NF-κB.  相似文献   

17.
18.
Regucalcin plays a pivotal role in regulating intracellular calcium homeostasis and consequently has a profound effect on multiple intracellular signal transduction pathways. The regucalcin transgenic rat displays pronounced bone loss, and bone marrow from these animals exhibits significantly elevated osteoclast formation. Consistent with these effects exogenous regucalcin promotes osteoclastogenesis in mouse bone marrow cultures, but interestingly regucalcin suppresses the differentiation and mineralization of MC3T3 osteoblast precursors. However, the molecular mechanisms involved are presently unclear. As the nuclear factor-kappa B (NF-κB) signal transduction pathway is critical to osteoclastogenesis but inhibitory of osteoblastogenesis, we hypothesized that regucalcin may promote osteoclastogenesis and suppress osteoblastogenesis upregulating NF-κB signal transduction. In this study, we examined the effect of regucalcin on receptor activator of NF-κB (RANK) ligand (RANKL) -induced osteoclast formation using the RAW264.7 monocytic cell line and osteoblast formation using the pre-osteoblastic cell line MC3T3. As expected, culture with exogenous regucalcin was found to enhance RANKL-induced osteoclastogenesis. Consistent with this effect regucalcin increased basal and RANKL-induced NF-κB activation as assessed by NF-κB luciferase assay. The capacity of regucalcin to augment RANKL-induced NF-κB activity was inhibited by menaquinone-7, a potent NF-κB antagonist, while the Erk inhibitor PD98059 and staurosporine had no effect, demonstrating a specific effect on NF-κB signaling. By contrast, regucalcin inhibited mineralization of MC3T3 cells and enhanced tumor necrosis factor-α (TNFα)-induced NF-κB activation. As with NF-κB induction in osteoclasts, NF-κB activation was abolished by addition of the NF-κB antagonist menaquinone-7, but not by PD98059 and staurosporine. Transforming growth factor-β (TGFβ) and bone morphogenic protein-2 (BMP2) are potent early commitment and late osteoblast differentiation factors, respectively, and both mediate their actions through the Smad-signal transduction pathway, a system that is extremely sensitive to and inhibited by TNFα-induced NF-κB. We consequently examined the effect of regucalcin on TGFβ and BMP2-induced Smad activation in the presence and absence of TNFα. While regucalcin had no effect on basal Smad activation by TGFβ and BMP2, it enhanced the suppressive effect of TNFα on both TGFβ- and BMP2-induced Smad activations. Taken together, present data suggest that regucalcin may induce bone loss in vivo by promoting osteoclasts and simultaneously suppressing osteoblasts through amplification of basal and/or cytokine-induced NF-κB activation. Regucalcin may have a role as a modulator in NF-κB activation.  相似文献   

19.
20.
J Kim  CS Kim  E Sohn  YM Lee  K Jo  JS Kim 《PloS one》2012,7(8):e43591
KIOM-79 is an herbal mixture of parched Puerariae radix, gingered Magnoliae cortex, Glycyrrhizae radix and Euphorbiae radix. In the present study, we determined the efficacy and possible mechanism of KIOM-79 on the advanced glycation end product (AGE)-modified bovine serum albumin (BSA)-induced apoptosis of cultured bovine retinal pericytes and rat retinal pericytes in Zucker diabetic fatty (ZDF) rats. Seven-week-old male ZDF rats were treated with KIOM-79 (50 mg/kg body weight) once a day orally for 13 weeks. KIOM-79 significantly inhibited pericyte apoptosis which were induced by the AGE-BSA treatment. The KIOM-79 treatment markedly suppressed the activation of nuclear factor-kappaB (NF-κB) through the inhibition of inhibitory κB kinase complex. In addition, the oral administration of KIOM-79 inhibited the changes in retinal vasculature (vascular hyperpermeability, acellular capillary). KIOM-79 strongly inhibited pericyte apoptosis, NF-κB activation and the expression of pro-apoptotic Bax and tumor necrosis factor-α. Our results suggest that KIOM-79 may exert inhibitory effects on AGE-induced pericyte apoptosis by blocking NF-κB activation, thereby ameliorating retinal microvascular dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号